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Abstract

The detectors at the Large Hadron Collider at CERN reconstruct, among other
objects, collimated sprays of particles, which are referred to as “jets”. An important
task is to identify the type of the elementary particle that initiated the jet, i.e.
whether it is a light quark, a heavy quark or a gluon, leading to a multiclass
classification problem. We present results from a realistic simulation of one of
the two multi-purpose detectors at the LHC, the Compact Muon Solenoid. The
basic network architecture relies heavily on using convolutional layers on low-level
physics objects, like individual particle objects, and uses much more information
than previous algorithms in the literature. It stands out as the first proposal that
can be applied to multiclass classification for all types of jet initiators as well as
for jets of different widths. We demonstrate significant improvements by the new
approach on the classification capabilities for several of the tested particle classes.
In one specific case, and at high momentum, a decrease of nearly 90% in the rate
of false positives is achieved for a constant true positive rate of 40%.

1 Introduction

At the Large Hadron Collider (1) at CERN, where the Higgs boson was discovered leading to the
2013 Nobel prize, the reconstruction of jets is a key process. A jet is a particle spray that is initiated
by quarks and gluons, which are elementary particles. Identifying the type of the elementary particle
that initiated the jet is of crucial importance for physics analyses. Recently, several studies have
proposed the use of deep neural networks for the classification of the elementary particles that initiate
a jet (2; 3; 4; 5; 6; 7; 8). Jets typically contain O(10) to O(100) particles. The CMS (9) experiment
builds particle objects (10) by combining information from all its detector systems, including the
tracking detectors and the calorimeters. The information per particle object is high dimensional,
heterogeneous, and differs for the different particle types. Figure 1 shows a slice of the CMS detector
along with the different particle types and the signals that are observed in the detector. Some of the
methods previously proposed have used either only a subset of the particles or only a subset of the
information available for each particle. Others have used information from a single sub-detector, e.g.
the calorimeters that are naturally pixelized, to create images, so that neural networks for images can
then be applied. In both cases, only a relatively small subset of the available information provided in
a jet is used in the classification. As a result, either these classifiers could be used only for a small
subset of possible jet initiators or they were suboptimal.
The strategy presented here uses much more information, which is enabled by applying 1D convolu-
tional layers on physics objects like particles. This expanded information allows for the classification
of essentially all types of jet initiators and works for different cone sizes of jets. It is thus significantly
more generic than any previous strategy.
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Figure 1: Slice of the CMS detector. It illustrates the different detector types and their different
response to different particle types, such as muons or hadrons.

2 Neural network design

We define three lists of physics objects which are associated to a jet. Charged particle objects, which
we measure accurately in the silicon tracker, neutral particle objects, which are only measured in the
calorimeters, and “secondary vertices”, which are points that are displaced from the main collision
point and where two or more tracks seem to originate.
A part of the neural network architecture that is described in the following is inspired by the strategy
that was previously applied, namely that features were engineered by hand for all physics object
types. This handcrafted feature engineering is now replaced by convolutional network layers. We use
18 features for each charged particle, 8 for each neutral particle, and 16 for each secondary vertex.
Multiple layers of 1D 1x1 convolutions are applied for each object type to extract features per object.
The numbers of nodes of the chained 1D 1x1 convolutional layers on the object lists are 64, 32, 32,
and 8 for charged particle objects, 32, 16, and 4 for neutral particle objects, and 64, 32, 32, and 8
for secondary vertex objects. After these convolutional layers, the objects are placed in sequences
that are sorted based on physics arguments relevant to the classification. Different sorting schemes
are found to have a very modest impact on the result. The sequences are then passed as inputs to
recurrent neural networks (LSTM (11)) with an output of 150, 50, and 50 intermediate features for
charged, neutral, and vertex objects, respectively. Each jet also has 8 global features. These global
features are concatenated with the outputs of the recurrent networks and are then given as input to
a dense neural network with 6 layers. We use ReLU (12) activation, DropOut (13) (rate 0.1) and
batch normalization (14). For optimization, the Adam optimizer (15) is used with a learning rate of
ε = 10−8 and no automatic learning rate decay. However, the learning rate is decreased manually
during training time in case the loss plateaus. For the technical implementation, we use Keras (16)
and Tensorflow (17). The training sample consists of about 100 million jets, of which 20 million are
used as development and validation samples, evenly split. We use softmax as activation function in
the last layer and categorical cross-entropy as loss function, with the following classes: b-jet, double
b-jet, leptonic b-jet, c-jet, uds-jet and gluon-jet. b- and c-jets are also referred to as heavy flavor jets.

3 Performance comparison

The performance of our classifier for the sum of b-jet classes vs. the c-jet class and the combined
uds- and gluon-jet classes is compared to the standard jet classification in use in CMS. Figure 2
shows the receiver operating characteristic curve. A significant gain of the DeepJet classifier (called
DeepFlavour when used for heavy flavor jet classification) with respect to the standard classifier
is observed. The standard classifier has a dense deep neural network that is similar to the one
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Figure 2: b-jet efficiency vs. misidentification
probability for c-jets and uds- and gluon-jets of
simulated events. A minimal transverse momen-
tum (pT ) of 30 GeV is required. DeepCSV is the
standard CMS classifier, DeepFlavour the neu-
ral network described in the text, and noConv
a dense neural network with the same input as
DeepFlavour (18).
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Figure 3: b-jet efficiency vs. misidentification
probability for c-jets and uds- and gluon-jets
of simulated events. A transverse momentum
(pT ) range from 600 GeV to 1000 GeV is se-
lected. DeepCSV is the standard CMS classifier,
DeepFlavour the neural network described in the
text (18).

in DeepFlavour, but uses handcrafted object features. To gain insight into the improvement, we
also trained a wide dense neural network with the complete input of DeepFlavour, but without the
convolutional layers; this is found to lead to a clear performance degradation. Figure 3 compares the
performance of the two classifiers for very high momentum jets. Here DeepFlavour outperforms the
old classifier by a large margin. A standard working point for jet classification is defined at 1% false
positive rate; DeepFlavour leads to only 0.12% false positive rate for the same rate of true positives.
A large fraction of this gain is due to the preselection of charged particle objects and object features
used in the standard classifier; passing to DeepFlavour only the standard classifier inputs results in a
performance similar to the latter.
For gluon- vs. uds-jet separation it was previously shown that deep neural networks outperform
classical procedures (4). We directly compare DeepJet to a 2D convolutional network architecture
similar to the one proposed in (4) and to a narrowed down version of DeepJet, where only 4 features
per particle object and no convolutional layers are used; this is labeled as recurrent in the Figures. The
sequence is sorted in descending order in the transverse momentum of the particle objects. Different
methods of sorting have been tested in (7), which is similar to the narrowed down DeepJet neural
network, with similar performance. The three architectures are compared in Figure 4. DeepJet and the
custom classifiers give similar results. The image approach is slightly less performant, which might
be due to information loss when transforming the continuous position information into an image
with discrete position information. In real data, jet classification is always a multiclass classification
problem, as a priori all classes are possible for a given jet. The DeepJet multiclass approach gives
much more information to the user and performs as well as or better than all binary classification
schemes.

4 Adaptation for wide jets

So far we have discussed the so-called “narrow” jets in which the constituent particles are contained
in a cone of a relatively small radius. These narrow jets are typically used to identify particle sprays
initiated by a single elementary particle, a quark or a gluon. However, when the quarks originate in
the decay of a high-momentum heavy particle, the subsequent particle sprays from different quarks
become highly collimated and cannot be resolved into separate narrow jets. In such cases, a “wide”
jet, with a larger cone radius, is often used to include all particle sprays from the heavy particle decay
in a single jet.

An approach similar to the one used for narrow jets can also be applied for wide-jet classification,
where the task is to identify a wide jet as originating from a top quark, a W boson, a Z boson, a Higgs
boson, or background processes. Due to different characteristics between narrow and fat jets, a few
modifications are made on the neural network architecture to better adapt to the problem. Due to its
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Figure 4: uds-jet (light quark) efficiency vs.
gluon-jet misidentification probability of three
different neural networks (DeepJet, recurrent and
convolutional) described in the text (19).
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Figure 5: Top jet identification efficiency
vs. background misidentification probability of
DeepJet for wide jets and a BDT based algo-
rithm (23).

larger cone size, a typical wide jet has at least twice as many particles as a typical narrow jet. The
recurrent units used in narrow-jet classification become significantly slower to train, as the length
of the input list grows. Moreover, the relations among the particle objects in a wide jet are more
involved than the ones in a narrow jet, because a wide jet tends to contain more than just one quark.
Thus, an architecture based solely on 1D convolutions is adopted to mitigate the high computational
cost of recurrent units. The kernel size of the 1D convolutions is changed from 1 to 3 and the depth
of the convolutional layers is increased in order to better exploit the rich interrelationship among
particle objects in a wide jet.

The convolution-only architecture for wide jet classification is largely based on the ResNet model
(20). We adapt it to work with 1D particle lists instead of 2D images, but keep the main structure and
all important ingredients such as residual connection (21), batch normalization (14), and ReLU (12)
activation function. The depth of the convolutional network is 14 layers for inclusive and charged
particle objects, and 10 for secondary vertex objects. The inclusive particle object list is a combination
of charged and neutral particle objects with their common features. This combination is found to
improve the performance slightly. The filter size of each convolutional layer ranges between 32 to 128.
The outputs from the three separate convolutional neural networks are combined in a fully connected
layer with 512 units, followed by a DropOut layer with a drop-rate of 0.2, and then connected to
the output layer. The neural network is implemented using the MXNet package (22) and trained
with the Adam (15) optimizer with a learning rate of 0.001 to minimize the cross-entropy loss. The
learning rate is reduced by a factor of 10 at the 10th, 20th, and 30th epochs to improve convergence.
40 million samples are used for training and 5 million for each, development and validation.

With the significantly improved performance observed for DeepJet in high-momentum b-jet identifica-
tion, as shown in Figure 2, it is expected that top-jet identification will benefit from a similar approach
because a b quark is present in top quark decays. Figure 5 shows the performance of DeepJet for
the identification of wide jets originating from top quark decays. We compare the performance of
DeepJet with one of the most performing top jet identification algorithms (24) used in CMS, which is
based on boosted decision trees (BDT) and physics inspired input features. A significant improvement
in performance is observed for DeepJet, where the false positive rate is reduced by a factor of 4
compared to the BDT-based algorithm at the same top-jet true positive rate of 50%.

5 Conclusion

We present new custom neural network architectures for generic classification of jets of various cone
sizes and classes. Our proposals outperform significantly the standard classification procedures in the
CMS experiment in all classes tested. If this performance gain in the simulation is confirmed using
real collision data, the new classification will result in a significant improvement in the CMS detector
capabilities and will therefore have a significant positive impact on the research output of the CMS
experiment.
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