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Abstract
Progress in probabilistic generative models has accelerated, developing richer
models with neural architectures, implicit densities, and with scalable algorithms
for their Bayesian inference. However, there has been limited progress in mod-
els that capture causal relationships, for example, how individual genetic factors
cause major human diseases. In this work, we describe implicit causal models,
a class of causal models that leverages neural architectures with an implicit den-
sity. Further, we describe an implicit causal model that adjusts for confounders
by sharing strength across examples. In experiments, we scale Bayesian inference
on up to a billion genetic measurements. We achieve state of the art accuracy for
identifying causal factors: we significantly outperform existing genetics methods
by an absolute difference of 15-45.3%.1

1 Introduction
Probabilistic models provide a language for specifying rich and flexible generative processes
[14, 13]. Recent advances expand this language with neural architectures, implicit densities, and with
scalable algorithms for their Bayesian inference [19, 24]. However, there has been limited progress
in models that capture high-dimensional causal relationships [15, 22, 8]. Unlike models which learn
statistical relationships, causal models let us manipulate the generative process and make counter-
factual statements, that is, what would have happened if the distributions changed.

As the running example in this work, consider genome-wide association studies (GWAS) [26, 17, 9].
The goal of GWAS is to understand how genetic factors, i.e., single nucleotide polymorphisms
(SNPs), cause traits to appear in individuals. Understanding this causation both lets us predict
whether an individual has a genetic predisposition to a disease and also understand how to cure
the disease by targeting the individual SNPs that cause it.

We synthesize ideas from causality and modern probabilistic modeling. First, we develop implicit
causal models, a class of causal models that leverages neural architectures with an implicit density.
With GWAS, implicit causal models generalize previous methods to capture important nonlineari-
ties, such as gene-gene and gene-population interaction. Building on this, we describe an implicit
causal model that adjusts for population-confounders by sharing strength across examples (genes).
In experiments, we scale Bayesian inference on implicit causal models on up to a billion genetic
measurements. We achieve state of the art accuracy for identifying causal factors: we significantly
outperform existing genetics methods by an absolute difference of 15-45.3%.

2 Implicit Causal Models
Probabilistic Causal Models. Probabilistic causal models [15], or structural equation models,
represent variables as deterministic functions of noise and other variables. As illustration, consider
the causal diagram in Figure 1. It represents a causal model where there is a global variable

β = fβ(εβ), εβ ∼ s(·),
1A longer version of this work is available at https://arxiv.org/abs/1710.10742 [23].
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Figure 1: Probabilistic causal model. (left) Variable x causes y coupled with a shared variable β.
(right) A more explicit diagram where variables (denoted with a square) are a deterministic function
of other variables and noise ε (denoted with a triangle).
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Figure 2: (left) Causal graph for GWAS. The population structure of SNPs for each individual (zn)
confounds inference of how each SNP (xnm) causes a trait of interest (yn). (right) Implicit causal
model for GWAS. Its structure is the same as the causal graph but also places priors over parameters
φ and θ and with a latent variable wm per SNP.

and for each data point n = 1, . . . , N ,

xn = fx(εx,n, β), yn = fy(εy,n, xn, β), εx,n, εy,n ∼ s(·). (1)

The noise ε are background variables, representing unknown external quantities which are jointly in-
dependent. Each variable β, x, y is a function of other variables and its background variable.

We are interested in estimating the causal mechanism fy . It lets us calculate quantities such as
the causal effect p(y | do(X = x), β), the probability of an outcome y given that we force X to
a specific value x and under fixed global structure β. This quantity differs from the conditional
p(y |x, β). The conditional takes the model and filters to the subpopulation where X = x; in
general, the processes which set X to that value may also have influenced Y . Thus the conditional
is not the same as if we had manipulated X directly [15].

Implicit Causal Models. Implicit models capture an unknown distribution by hypothesizing about
its generative process [4, 24]. For a distribution p(x) of observations x, recent advances define a
function g that takes in noise ε ∼ s(·) and outputs x given parameters θ,

x = g(ε | θ), ε ∼ s(·). (2)

Unlike models which assume additive noise, setting g to be a neural network enables multilayer,
nonlinear interactions. Implicit models also separate randomness from the transformation; this imi-
tates the structural invariance of causal models (Equation 1).

To enforce causality, we define an implicit causal model as a probabilistic causal model where the
functions g form structural equations, that is, causal relations among variables. Implicit causal
models extend implicit models in the same way that causal networks extend Bayesian networks
[16] and path analysis extends regression analysis [25]. They are nonparametric structural equation
models where the functional forms are themselves learned.

3 Implicit Causal Models with Latent Confounders
Consider the running example of genome-wide association studies (GWAS) (Figure 2). There are N
data points (individuals). Each data point consists of an input vector of length M (measured SNPs),
xn = [xn1, . . . , xnM ] and a scalar outcome yn (trait of interest). Typically, the # of measured SNPs
M ranges from 100,000 to 1 million and the # of individuals N ranges from 500 to 10,000.

We are interested in how changes to each SNP Xm cause changes to the trait Y . Formally, this is the
causal effect p(y | do(xm), x−m), which is the probability of an outcome y given that we force SNP

2



Xm = xm and consider fixed remaining SNPs x−m. Standard inference methods are confounded by
the unobserved population structure of SNPs for each individual, as well as the individual’s cryptic
relatedness to other samples in the data set. This confounder is represented as a latent variable zn,
which influences xnm and yn for each data index n; see Figure 2. Because we do not observe the
zn’s, the causal effect p(y | do(xm), x−m) is unidentifiable [22].

Building on previous GWAS methods [17, 26, 1], we build a model that jointly captures zn’s and
the mechanisms for Xm → Y . Consider the implicit causal model where for each data point
n = 1, . . . , N and for each SNP m = 1, . . . ,M ,

zn = gz(εzn), xnm = gxm
(εxnm

, zn |wm), yn = gy(εyn , xn,1:M , zn | θ), (3)

where εzn , εxnm
, εyn ∼ s(·). The function gz(·) for the confounder is fixed. Each function

gxm
(· |wm) per SNP depends on the confounder and has parameters wm. The function gy(· | θ)

for the trait depends on the confounder and all SNPs, and it has parameters θ. We place priors over
the parameters p(wm) and p(θ).

Figure 2 (right) visualizes the model. It is a model over the full causal graph (Figure 2 (left)) and
differs from the unconfounded case: § 2 only requires a model from X → Y , and the rest of the
graph is “ignorable” [8].

To estimate the mechanism fy , we calculate the posterior of the outcome parameters θ,

p(θ |x,y) =
∫
p(z |x,y)p(θ |x,y, z) dz. (4)

Note how this accounts for the unobserved confounders: it assumes that p(z |x,y) accurately re-
flects the latent structure. In doing so, we perform inferences for p(θ |x,y, z), averaged over poste-
rior samples from p(z |x,y).
Generative Process of Confounders zn. We use standard normal noise and set the confounder
function gz(·) to the identity. This implies the distribution of confounders p(zn) is standard normal.
Their dimension zn ∈ RK is a hyperparameter.

Generative Process of SNPs xnm. Designing nonlinear processes that return matrices is an ongoing
research direction (e.g., [10, 11]). To design one for GWAS (the SNP matrix), we build on an implicit
modeling formulation of factor analysis; it has been successful in GWAS applications [17, 21]. Let
each SNP be encoded as a 0, 1, or 2 to denote the three possible genotypes. This is unphased data,
where 0 indicates two major alleles; 1 indicates one major and one minor allele; and 2 indicates two
minor alleles. Set

logitπnm = z>n wm, xnm = I[ε1 > πnm] + I[ε2 > πnm], ε1, ε2 ∼ Uniform(0, 1).

This defines a Binomial(2, πnm) distribution on xnm. Analogous to generalized linear models, the
Binomial’s logit probability is linear with respect to zn. We then sum up two Bernoulli trials: they
are represented as indicator functions of whether a uniform sample is greater than the probability.
(The uniform noises are newly drawn for each index n and m.) We relax this generative process us-
ing a neural network over concatenated inputs, logitπnm = NN([zn, wm] |φ). Similar to the above,
the variableswm serve as principal components. The neural network takes an input of dimension 2K
and outputs a scalar real value; its weights and biases φ are shared across SNPs m and individuals n.
We place a standard normal prior over φ.

Generative Process of Traits yn. To specify the traits, we build on an implicit modeling formu-
lation of linear regression. It is the mainstay tool in GWAS applications [17, 21]. Formally, for
real-valued y ∈ R, we model each observed trait as

yn = NN([xn,1:M , zn, ε] | θ), εn ∼ Normal(0, 1).

The neural net takes an input of dimensionM+K+1 and outputs a scalar real value; for categorical
outcomes, the output is discretized over equally spaced cutpoints. We also place a group Lasso prior
on weights connecting a SNP to a hidden layer. This encourages sparse inputs: we suspect few SNPs
affect the trait [27]. We use standard normal for other weights and biases.

4 Likelihood-Free Variational Inference

We described a rich causal model for how SNPs cause traits and that can adjust for latent population-
confounders. Given GWAS data, we aim to infer the posterior of outcome parameters θ (Equation 4).
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Trait ICM PCA (Price+06) LMM (Kang+10) GCAT (Song+10)

HapMap 99.2 34.8 30.7 99.2
TGP 85.6 2.7 43.3 70.3
HGDP 91.8 6.8 40.2 72.3
PSD (a = 1) 97.0 80.4 92.3 95.3
PSD (a = 0.5) 94.3 79.5 90.1 93.6
PSD (a = 0.1) 92.2 38.1 38.6 90.4
PSD (a = 0.01) 92.7 24.2 35.1 90.7
Spatial (a = 1) 90.9 56.4 60.0 75.2
Spatial (a = 0.5) 86.2 50.5 46.6 72.5
Spatial (a = 0.1) 80.9 2.4 26.6 35.6
Spatial (a = 0.01) 75.5 1.8 15.3 30.2

Table 1: Precision accuracy over an extensive set of configurations and methods; we average over
100 simulations for a grand total of 4,400 fitted models. The setting a in PSD and Spatial determines
the amount of sparsity in the latent population structure: lower a means higher sparsity. ICM is
significantly more robust to spurious associations, outperforming other methods by up to 45.3%.

Calculating this posterior reduces to calculating the joint posterior of confounders zn, SNP parame-
ters wm and φ, and trait parameters θ,

p(z1:N , w1:M , φ, θ |x,y) ∝ p(φ)p(θ)
∏N
n=1[p(zn)p(yn |xn,1:M , zn, θ)

∏M
m=1 p(wm)p(xnm | zn, wm, φ)].

This means we can use typical inference algorithms on the joint posterior. We then collapse variables
to obtain the marginal posterior of θ. (For Monte Carlo methods, we drop the auxiliary samples; for
variational methods, it is given if the variational family follows the posterior’s factorization.)

One difficulty is that with implicit models, evaluating the density is intractable: it requires inte-
grating over a nonlinear function with respect to a high-dimensional noise (Equation 2). Thus we
require likelihood-free methods, which assume that one can only sample from the model’s likelihood
[12, 24]. Here we apply likelihood-free variational inference (LFVI), which we scale to billions of
genetic measurements [24].

5 Empirical Study: Robustness to Spurious Associations
We analyze 11 simulation configurations, where each configuration uses 100,000 SNPs and 940 to
5,000 individuals. We simulate 100 GWAS data sets per configuration for a grand total of 4,400
fitted models (4 methods of comparison). Each configuration employs a true model to generate the
SNPs and traits based on real genomic data. Following Hao et al. [6], we use the Balding-Nichols
model based on the HapMap dataset [2, 5]; PCA based on the 1000 Genomes Project (TGP) [3];
PCA based on the Human Genome Diversity project (HGDP) [20]; four variations of the Pritchard-
Stephens-Donelly model (PSD) based on HGDP [18]; and four variations of a configuration where
population structure is determined by a latent spatial position of individuals. Only 10 of the 100,000
SNPs are set to be causal.

We compare against three methods that are currently state of the art: PCA with linear regression [17]
(“PCA”); a linear mixed model (EMMAX software) [9] (“LMM”); and logistic factor analysis with
inverse regression [21] (“GCAT”). We use Adam with a initial step-size of 0.005, initialize neural
network parameters uniformly with He variance scaling [7], and specify the neural networks for
traits and SNPs as fully connected with two hidden layers, ReLU activation, and batch normalization.
For the trait model’s neural network, we found that including latent variables as input to the final
output layer improves information flow in the network.

Table 1 displays the precision for predicting causal factors across methods. Our method achieves
state of the art across all configurations. When failing to account for populations, “spurious asso-
ciations” occur between genetic markers and the trait of interest, despite the fact that there is no
biological connection. Precision measures a method’s robustness to spurious associations: higher
precision means fewer false positives and thus more robustness. Our method dominates in difficult
tasks with sparse (small a), spatial (Spatial), and/or mixed membership structure (PSD): there is
over a 15% margin in difference to the second best in general, and up to a 45.3% margin on the
Spatial (a = 0.01) configuration.
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