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Abstract

We present studies of the application of Deep Neural Networks and Convolutional
Neural Networks for the classification, energy regression, and simulation of parti-
cles produced in high-energy particle collisions.We train cell-based Neural Nets
that provide significant improvement in performance for particle classification and
energy regression compared to feature-based Neural Nets and Boosted Decision
Trees, and Generative Adversarial Networks that provide reasonable modeling of
several but not all shower features.

1 Overview

In High Energy Physics (HEP) experiments, detectors serve as cameras that take pictures of the
products of particle collisions. One of the key components of such detectors are calorimeters that
image the energy depositions of the showers of secondary particles produced by high energy particles
from these collisions interacting with dense detector material. The resulting patterns of depositions,
which are characteristic of the particle type, are observed in "cells" analogous to voxels (possibly with
irregular shapes) in three-dimensional (3D) images. Physicists, as a first step towards discovering or
studying interesting phenomena or new particles, typically use features extracted by sophisticated
reconstruction algorithms to identify the type and estimate the energy of particles in large samples of
collision events. Machine Learning (ML) techniques are well suited for such tasks, and indeed ML,
has long played an essential role in HEP, including the 2012 Nobel Prize-winning discovery of the
Higgs boson [} 2] at the ATLAS [3]] and CMS [4] experiments at the Large Hadron Collider (LHC).

In the next decade, the High Luminosity Large Hadron Collider (HL-LHC) upgrade of the current
LHC will enhance the sensitivity to new physics by increasing the proton-proton collision rate. In
addition, many next generation detectors, such as the sampling calorimeters proposed for the ILC [3]]
and CLIC [6]], will improve the ability to identify and characterize particles produced in collisions
using highly granular 3D arrays of pixels. These upgrades and future accelerators will lead to higher
data volumes and a variety of technological challenges, e.g. real-time particle reconstruction and
fast detector simulation. In addition, physics measurements typically require extremely detailed and
precise simulation, relying on the well understood micro-physics governing the interaction of particles
with matter coded into software packages, the most notable being Geant4 [7]]. These simulations are
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generally very CPU intensive and in some cases, such as in the ATLAS experiment, currently require
roughly half of the experiment’s computing resources and are expected to be significantly more
for the HL-LHC. These challenges require novel computational and algorithmic techniques, which
has recently prompted efforts in HEP to apply modern ML to calorimetry [8, 9, |10, [11]. This prior
work has focused on extracting properties of sprays of particles called “jets,” while our studies focus
instead on electrons and photons, which may be produced in the decays of a variety of interesting
particles including Higgs bosons and hypothetical Supersymmetric particles.

This paper aims to demonstrate the improvement in performance for calorimetric classification,
regression, and simulation tasks gained from applying Deep Neural Networks (DNN) and Convolu-
tional Neural Networks (CNN) to calorimeter cells compared to the current ML techniques, such
as Boosted Decision Trees (BDTs), applied to features. We train separate DNNs to discriminate
electrons (e) from charged pions (), discriminate photons () from neutral pions (7°), and estimate
their energies. We observe significant improvement from using cell-based DNNs with respect to
feature-based Neutral Networks (NNs) and BDTs. We also demonstrate an application of Generative
Adpversarial Networks (GANSs) [[12] to reproduce CPU-intensive simulations of particle showers.

The study is based on pseudo-data simulated with GEANT4 [7] in the proposed Linear Collider
Detector (LCD) for the CLIC accelerator [[13]], which consists of a regular grid of 3D cells with cell
sizes of 5.1 mm?® and inner calorimeter radius of 1.5 m. Individual electron, photon, charged pion,
and neutral pion particles are shot into the central part of the detector, in a region with regular sensor
geometry and orthogonally to the calorimeter surface. The particle energy is set to 60 GeV for the
classification task, and varied between 10 and 510 GeV for the regression and between 100 and 500
GeV for GAN studies. For each event, a 25x25x25 cell slice of the electromagnetic calorimeter
(ECAL) and the corresponding 5x5x60 cell slice of the hadronic calorimeter (HCAL) are stored as
two 3D arrays of deposited energy in each cell. The slices are centered around the barycenter of
each ECAL energy deposit. All DNN models were implemented and trained using KERAS [14] with
Tensorflow [15]] or Theano [[16] back-ends. We used AdaBoost [17]] for the BDTs.

2 Classification: Particle Identification

Since the LHC collides protons, the collisions are dominated by strong interactions that produce
quarks and gluons that turn into “jets” of mostly pions. These highly copious jets are the primary
background to the identification of photons and leptons, which are much rarer. As a result, calorimeters
are required to only mis-identify roughly 1 in 10000 jets as a photon or electron. Initial studies of
DNN-based classification of the four particles types in our simulated samples yielded extremely good
results, with Area Under Curve (AUC) of Receiver-Operator Curves (ROC) of near 1. In order to
approximate the particle identification challenge at the LHC, we therefore select subsets of particles
most likely to be misidentified as photons or electrons. We considered two interesting cases, each
corresponding to a challenging classification task where we could compare BDTs trained on features
to DNNss trained on cells or features. The first is charged pions (7%), which are mis-identified as
electrons (e*) due to early showering in the ECAL, that we selected by requiring the ratio of total
energies deposited in HCAL to ECAL be less than 0.025. The second is neutral pions (7°), which
nearly always decay to two photons (y) but are commonly mis-indentified as single photons when
the two photons overlap, that we selected by requiring an opening angle of less than 0.01 radians
between the two photons (computed from ground truth), corresponding to approximately three cell
widths at the inner calorimeter face.

Each dataset was split into 400,000 training and 100,000 testing events. Preliminary studies indicated
that simple densely connected multi-layer DNNs were as effective as CNNs, so we chose to focus
on simple DNNs due to the smaller number of hyperparameters. Since the ECAL and HCAL input
tensors have different shapes, they were separately flattened and fed into the cell-based DNNs
with identical architectures and merged before a softmax layer was used to compute categorical
cross-entropy loss. Studies of data normalization strategies yielded best performance when the
cell energies were passed through a non-linear transformation f(FE) = %tanh (log E+1). We
considered approximately 1000 models in a hyperparameter scan and found little dependence of
the classifier performance on hyperparameters. For all DNNs (features, ECAL branch, and HCAL
branch) we selected a simple DNN consisting of 4 hidden layers with 256 neurons each, ReLU
activation, and dropout of 0.5, trained with Adam [18] optimizer with learning rate of 0.001. A similar
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Figure 1: Signal vs. background efficiency ROC curves for the (left) v vs. 70 and (right) e vs. 7
classifier. The red dots mark the chosen BDT working point.

1000 model BDT hyperparameter scan yielded best performance with 400 estimators, maximum
depth of 5, and learning rate of 0.5.

The features we computed are commonly used in calorimetry to characterize the particle shower
shape and energy deposit. These features are: total energy deposited in ECAL, total number of hits
in ECAL, the ratio of energy in ECAL first layer over energy in second layer, the ratio of energy in
ECAL first layer over all ECAL energy, second through sixth moments in the detector local x, y, and
z of ECAL energy deposits, all equivalent features for HCAL, ratio of HCAL to ECAL energy, and
ratio of number of hits in HCAL to ECAL. In our studies, we found that the most powerful features
are the second x and y moments that measure the lateral shower width.

0

Y VS, T evs. T
Model acc. AUC  Aegg ARpkg acc. AUC  Acgy ARpyg
BDT 83.1% 89.8% 93.8% 98.0% -

DNN (features) | 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 872% 93.5% 9.4% 1.63 99.4% 99.9% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

Figure [T] shows the ROC curves for the three classifiers and Table [I] quantifies the performance.
The areas under curve (AUC) and accuracies (acc.) for the cell-based DNNs are significantly
better than the feature-based DNNs and BDTs, which have similar performance. We also quantify
the achievable improvements in signal and background efficiency from the DNNs with respect
to the chosen “working point” on the BDT ROC curve indicated in Figure |1l For the v vs. 7°
(e vs. mF) classifier, the cell-based DNN may be used to either increase the signal efficiency by
Aésig = eggN - EST = 9.4% (4.9%) for fixed background efficiency, or decrease the background

€
efficiency by a factor ARpig = €y’ /by = 1.6 (151) for fixed signal efficiency.

3 Regression: Energy Reconstruction

We trained a separate dedicated DNN to estimate particle energies from their calorimeter deposits.
This DNN is composed of two CNNs for ECAL and HCAL, followed by a flattening and concatenation
layer, with a final densely connected layer. The ECAL branch uses a 3-feature convolutional layer
with a 4 x 4 x 4 window and stride of 1 in each direction, followed by a 2 x 2 x 2 max pooling layer
with a stride of 2. The HCAL branch has a 10-feature layer with a 2 x 2 x 6 window and stride of 1,
followed by a 2 x 2 x 2 max pooling layer with a stride of 2. All convolutional layers have ReL.U
activation. The output of both branches are linearized and merged, followed by a fully connected
layer with 1000 neurons. The final neuron has a linear activation function and the mean-squared error
(MSE) is used as the loss function. The data sample was split into 40,000 events for training, 10,000
events for validation, and 30,000 events for testing.

As a baseline measure of the energy, we use a simple bi-linear regression of the summed energy in
ECAL and HCAL to the true energy. Figure 2| compares the energy dependence of the calorimeter
resolution for each particle type and for both the neural net and the simple linear regression models.
Table[2] quantifies the results by fitting this dependence to the expected form. We observe significantly
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better performance from the DNN as compared to the simple model, with resolution enhancement of
a factor of 3.5-7 at low energies and 2—4 at high energies, for all four particle types.

4 Generative Model: Particle Simulation

We use the sample of ECAL 3D energy arrays to demonstrate the ability to simulate particles at given
energies using GANSs, as a proof of concept for a much larger plan to integrate a generic deep-learning
tool for fast simulation into the GeantV detector simulation library [[19]].

Both the GAN generator and discriminator models consist of four 3D convolution layers with leaky
ReLU activation functions. The number and sizes of filters were tuned to optimize the description of
the transverse and longitudinal shower shapes. The discriminator models take the calorimeter image
as input and produce two outputs: classification of the images as real or generated and regression
of the energy, in the manner described in the previous section. The generator takes as input the
desired particle energy and a latent noise vector initialized to a uniform probability distribution, and
outputs a 25 x 25 x 25 ECAL image. The results of GAN-simulated particles are shown in Fig[3] in
comparison with the particles generated via GEANT4 [7]]. The GAN provides reasonable modeling
of the longitudinal shower width but further tuning is required to model the transverse shower width.

5 Conclusion and Future Work

This paper shows how deep learning techniques could outperform traditional and resource-consuming
techniques in tasks typical of physics experiments at particle colliders, such as particle identification,
energy measurement, and detector simulation. To continue this work, we will push forward particle
classification and energy regression into new areas, using multi-particle events with overlapping
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Figure 3: Comparison of (left) transverse shower width and (right) longitudinal shower width for
GAN vs. Geant simulation of electrons with energies of 200-300 GeV.



showers, and including particles which impact the calorimeter at variable angles. We will also
continue to refine GAN simulation, with the goal of producing a tool for fast simulation.

6 Acknowledgemnts

This project is partially supported by the United States Department of Energy, Office of High Energy
Physics Research under Caltech Contract No. DE-SC0011925 and makes use of the Blue Waters
Supercomputer at the National Center for Supercomputing Applications. JR is partially supported
by the Office of High Energy Physics HEP-Computation. MS is grateful to Caltech and the Kavli
Foundation for their support of undergraduate student research in cross-cutting areas of machine
learning and domain sciences.

References

[1] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs
boson with the ATLAS detector at the LHC. Phys. Lett., B716:1-29, 2012.

[2] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC. Phys. Lett., B716:30-61, 2012.

[3] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003,
2008.

[4] S. Chatrchyan et al. The CMS Experiment at the CERN LHC. JINST, 3:S08004, 2008.

[5] Ties Behnke, James E. Brau, Brian Foster, Juan Fuster, Mike Harrison, James McEwan Paterson,
Michael Peskin, Marcel Stanitzki, Nicholas Walker, and Hitoshi Yamamoto. The International
Linear Collider Technical Design Report - Volume 1: Executive Summary. 2013.

[6] L. Linssen, A. Miyamoto, M. Stanitzki, and H. Weerts. Physics and Detectors at CLIC: CLIC
Conceptual Design Report. ArXiv e-prints, February 2012.

[7]1 S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth., A506:250-303,
2003.

[8] Luke de Oliveira, Michael Kagan, Lester Mackey, Benjamin Nachman, and Ariel Schwartzman.
Jet-images — deep learning edition. JHEP, 07:069, 2016.

[9] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. Learning Particle Physics by
Example: Location-Aware Generative Adversarial Networks for Physics Synthesis. Comput.
Softw. Big Sci., 1(1):4, 2017.

[10] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. CaloGAN: Simulating 3D
High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative
Adpversarial Networks. 2017.

[11] Josh Cogan, Michael Kagan, Emanuel Strauss, and Ariel Schwarztman. Jet-Images: Computer
Vision Inspired Techniques for Jet Tagging. JHEP, 02:118, 2015.

[12] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative Adversarial Networks. ArXiv e-prints, June 2014.

[13] P. Lebrun, L. Linssen, A. Lucaci-Timoce, D. Schulte, F. Simon, S. Stapnes, N. Toge, H. Weerts,
and J. Wells. The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the
Terascale : CLIC Conceptual Design Report. 2012.

[14] Francois Chollet et al. Keras. https://github.com/fchollet/keras| 2015.

[15] Martin Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[16] Rami Al-Rfou et al. Theano: A Python framework for fast computation of mathematical
expressions. 2016.


https://github.com/fchollet/keras

[17]

[18]

[19]

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth International Conference on International Conference on Machine
Learning, ICML’96, pages 148-156, San Francisco, CA, USA, 1996. Morgan Kaufmann
Publishers Inc.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv e-prints,
December 2014.

G Amadio, A Ananya, J Apostolakis, A Arora, M Bandieramonte, A Bhattacharyya, C Bianchini,
R Brun, P Canal, F Carminati, L. Duhem, D Elvira, A Gheata, M Gheata, I Goulas, R Iope,
S Jun, G Lima, A Mohanty, T Nikitina, M Novak, W Pokorski, A Ribon, R Sehgal, O Shadura,
S Vallecorsa, S Wenzel, and Y Zhang. Geantv: from cpu to accelerators. Journal of Physics:
Conference Series, 762(1):012019, 2016.



	Overview
	Classification: Particle Identification
	Regression: Energy Reconstruction
	Generative Model: Particle Simulation
	Conclusion and Future Work
	Acknowledgemnts

