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Abstract

Free Electron Laser (FEL) facilities often must accommodate requests for a variety
of electron beam parameters in order to supply scientific users with appropriate
photon beam characteristics. This usually requires skilled human operators to tune
the machine. In principle, a neural network control policy that is trained on a broad
range of machine operating states could be used to quickly switch between these
requests without substantial need for human intervention. We present preliminary
results from an ongoing simulation study in which a neural network control policy
is investigated for rapid switching between beam parameters in a compact THz
FEL that exhibits nonlinear electron beam dynamics. To accomplish this, we first
train a feed-forward neural network to mimic a physics-based simulation of the
FEL. We then train a neural network control policy by first pre-training it as an
inverse model (using supervised learning with a subset of the simulation data) and
then training it more extensively with reinforcement learning. In this case, the
reinforcement learning component consists of letting the policy network interact
with the learned system model and backpropagating the cost through the model
network to the controller network.

1 Introduction and Overview

Free Electron Laser (FEL) facilities support a broad range of scientific endeavors, for example
elucidating protein structures [1], investigating natural processes such as photosynthesis [2], and
understanding the origin of different material properties [3]. In support of this, these facilities must
accommodate requests for a variety of electron beam parameters in order to supply their users with
the appropriate photon beam characteristics for any given experiment. This usually requires skilled
human operators to tune the machine, thus reducing the amount of useful experimental time and
increasing the overall operating cost of the facility relative to its scientific output. In principle, a
neural network control policy that is trained on a broad range of operating states could be used to
quickly switch between these requests without substantial need for human intervention (see [4] for
more general discussion on possible applications of neural networks to modeling and control of
particle accelerators).

We are exploring this approach using simulations of a compact THz FEL design that is based on the
Twente/Eindhoven University FEL (TEU-FEL) [5]. This an appealing system for this initial study
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because it has a small number of machine components, yet it exhibits non-trivial beam dynamics. In
this case, changing the operating state consists of specifying a change in the electron beam energy and
then choosing the appropriate injector and beamline settings such that the electron beam is properly
matched into the undulator. Here, we first give an overview of the FEL system. This is followed by a
discussion of our initial study, in which the aim was to choose the quadrupole magnet settings such
that specific Twiss parameters, αx,y and βx,y (which yield approximations of the beam ellipse in
position-momentum phase space and correspond to the beam tilt and size/shape, respectively), are
achieved for arbitrary requested beam energies within the range of 3–6 MeV. We then briefly discuss
our current efforts on a more comprehensive study.

2 FEL Description and Physics-based Simulation

The FEL we chose to use as our template is designed to produce light with a wavelength that is
tunable between 200 µm and 800 µm. It consists of a 5.5-cell, 1.3-GHz photocathode RF gun, a
beam transport section that consists of 5 quadrupoles (Q1–Q5), and a fixed-gap THz undulator. The
photoinjector is an RF structure that accelerates and focuses the initial electron beam. A bucking
coil and solenoid provide appropriate focusing in the photoinjector. More details on this accelerator
design can be found in [5], and Fig. 1 shows the relevant components for this study. In order to
achieve proper matching into the undulator, the beam is focused to a waist at the entrance, which
means the alpha parameter αx,y = 0 . We chose to find settings for the quadrupoles such that
the same beta value (βx,y) at the entrance of the undulator for each electron beam energy would be
achieved: βx,y = 0.106 [m/rad]. This corresponds to a beam size that is within the optimal field
region of the undulator for all energies.

While this machine is comparatively simple in terms of the number of components, the behaviour
of the electron beam involves some subtleties that if not addressed properly will result in decreased
performance of the FEL. In particular, the beam evolution throughout the machine is nonlinear.
Because the bunch charge can be as large as 5 nC and the beam energy is low (3–6 MeV), space-
charge effects (i.e. interactions between electrons within the beam) are significant throughout the
system. This complicates the task of focusing the beam, which in turn complicates the task of
matching the beam into the undulator.

A physics-based simulation of the machine was constructed using SUPERFISH [6] for the RF fields
and PARMELA [7] for the beam dynamics. The solenoid and bucking coil assembly were modelled
using PANDRIA [6] using the nominal current setting in the solenoid. The bucking coil was scaled to
cancel the magnetic field on the cathode. The combined field map is then scaled in PARMELA in
order to tune the space-charge compensation. The PARMELA simulations were performed using
5000 macro-particles with a 0.1o phase integration step. This was determined to be well within the
stable region for reasonable estimation of bulk beam parameters [8].

Figure 1: Layout of the accelerator showing the 5.5-cell photoinjector with its bucking coil and
solenoid, the cathode, the quadrupoles, the undulator, and the beam dump.

3 Neural Network Model

First, we train a neural network model to mimic the physics-based simulation of the machine. This
creates a surrogate for the full simulation that captures the relevant behaviour of the machine and
can execute quickly to facilitate controller training. Similar approaches to creating fast-executing
stand-ins of simulations have been used for other accelerator systems [9, 10] and in other fields,
including simulation of particle detectors [11] and cosmological processes [12].

2



The model was trained to predict the Twiss parameters, beam energy, emittance, and transmission
at the entrance of the undulator, given the RF power, the RF phase, the solenoid strength, and the
quadrupole settings (see Fig. 2). Because the calculated beam parameters become inaccurate when
a smaller number of particles remains in the transmitted bunch, we have two ouput layers: one for
transmission, which is trained on the full data set, and one for the beam parameters, which is only
trained when the transmission is above 90%. We wanted to mimic what one might find in measured
data from an FEL facility (i.e. noisy data with tuning around roughly optimal settings). As such,
the training set consisted of the output from each iteration of an optimization routine (in this case,
Nelder-Mead [13]) to find optimal quadrupole settings for 12 different beam energies between 3.1
and 6.2 MeV, with noise added (resulting in 7195 samples total ). Data for the 5.7-MeV electron
beam was excluded from the training set and used as the validation set (310 samples total). Table 1
shows the range of each parameter used in the training data.

The model network consists of four hidden layers containing 50, 50, 30, and 30 nodes, respectively.
Each node in the hidden layers uses a hyperbolic tangent activation function and a dropout [14]
probability of 10%. The weights and biases of the network were trained using the AdaMax [15]
optimization algorithm, along with subsequent fine-tuning using Møller’s scaled conjugate gradient
[16] algorithm. The cost was the mean squared error over the predictions for each batch of 200
samples. The network was constructed and trained using a combination of lasagne [17] and Theano
[18]. The performance of the model in terms of mean absolute error (MAE) and standard deviation
(STD) is shown in Table 2. A representative plot from the validation set is shown in Figure 3.

Figure 2: General setup for the neural network model. In the controller, the inputs and outputs are
opposite those shown here.

Table 1: Maximum and minimum ranges of parameters in the training data
Parameter αx [rad] αy [rad] βx [m/rad] βy [m/rad] E [MeV]

Max Value 2.11 1.45 1.86 3.65 6.2
Min Value -2.14 -5.76 0.06 0.07 3.1
Parameter Q1 [T/m] Q2 [T/m] Q3 [T/m] Q4 [T/m] Q5 [T/m]

Max Value 0.83 1.98 -1.07 2.26 -0.23
Min Value -0.98 0.65 -2.24 0.89 -1.9
Parameter RF Power [norm.] Solenoid [norm.] RF Phase [deg] Transmission

Max Value 1.15 1.05 21.4 100%
Min Value 0.57 0.67 10.3 0

Table 2: Model Performance
Parameter Train MAE Train STD Train Max Val. MAE Val. STD Val. Max

αx [rad] 0.018 0.042 0.590 0.067 0.091 0.482
αy [rad] 0.022 0.037 0.845 0.070 0.079 0.345
βx [m/rad] 0.004 0.009 0.287 0.008 0.012 0.130
βy [m/rad] 0.005 0.011 0.357 0.012 0.017 0.189
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Figure 3: As an example, we show neural network model predictions and simulated values on the
validation data set, with a beam energy of 5.7 MeV. This shows that we have created a reasonably
accurate, fast-executing surrogate model as a stand-in for the physics-based model.

4 Neural Network Controller

The controller selects appropriate quadrupole settings for a desired beam energy. RF power, phase, and
solenoid strengths were changed only to facilitate the change in beam energy, and their corresponding
network outputs were ignored in this initial study. The controller was first trained as an inverse
model following the same procedure as the forward model. We then trained the controller network
more extensively via interaction with the model network, the output from which was used to directly
calculate the cost. Here we took the naïve approach of back-propagating the cost through the model
network. As such, we’ve trained a deterministic control policy first by pre-training with supervised
learning (on our data from simulation) and then continuing training with reinforcement learning (by
interacting with the learned model).

Random desired beam energy values between 3.1 and 6.2 MeV were specified, along with a target
set of α and β parameters, as inputs to the controller. The cost function included the mean squared
error between these target parameters and those predicted by the model. In addition, losses of full
transmission and larger quadrupole settings were penalized proportionally. Requested beam energy
values between 4.8 and 5.2 MeV were excluded from training and used exclusively for validation.
The controller network consisted of three hidden layers, with 30, 30, 20, and 20 nodes, respectively.
As before, each hidden node used a hyperbolic tangent activation function and a dropout probability
of 10%, and the batch size was 200 samples. This time, only the AdaMax algorithm was used for
optimizing the network weights.

Finally, interaction directly with the physics-based simulation was used to verify the performance of
the controller. Given random requested energy values within 3–6 MeV, Table 3 shows the performance
in reaching the desired Twiss parameters (αx,y = 0 rad, = βx,y = 0.106 m/rad) in one iteration for
energies in the range of the testing set and validation set. This shows that for a given energy, the
controller will immediately reach the desired beam size to within about 10% and the beam will be
close to a waist, requiring minimal further tuning to reach the target values.

Table 3: Ability to achieve αx,y = 0 rad, βx,y = 0.106 m/rad for 3–6 MeV beams in one iteration
Parameter Train MAE Train STD Train Max Val. MAE Val. STD Val. Max

αx [rad] 0.012 0.075 0.011 0.046 0.063 0.141
αy [rad] 0.013 0.079 0.012 0.045 0.064 0.140
βx [m/rad] 0.008 0.004 0.006 0.006 0.023 0.008
βy [m/rad] 0.014 0.011 0.011 0.011 0.069 0.038
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5 Current and Future Work

Based on results from the initial study, we have been conducting a more comprehensive version
of it that also includes the task of minimizing the emittance at the entrance of the undulator. As
this requires finer adjustment of the RF phase, RF power, and solenoid strength in conjunction with
the quadrupole settings, this time the controller takes in desired beam energy, Twiss parameters,
emittances, and transmission at the entrance of the undulator and sets the RF power, RF phase,
solenoid strength, and quadrupole settings needed to achieve them. For this study, we are also
doing more comprehensive testing (e.g. introducing drift and disturbances into the requested vs.
actual machine settings, letting the controller adapt to newly observed parameter ranges and act over
multiple iterations, etc.).

6 Conclusions

We have shown encouraging results from an initial simulation-based beamline tuning study, indicating
that in one iteration the neural network can set the quadrupoles to achieve close to the correct Twiss
parameters for arbitrary beam energies between 3–6 MeV. This is a first step toward the development
of a neural network controller that will facilitate fast switching between operational parameters along
with fine-tuning for the full machine. Our next step is to finish the full photoinjector and beamline
study. While the true merit of the approach won’t be clear until it is tested experimentally, plans are
underway for this and we can optimistically say that a neural network control policy may very well
be an expedient way of switching between operating states in an FEL.
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