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Abstract

This work discusses a novel framework for learning deep learning models by
using the scientific knowledge encoded in physics-based models. This framework,
termed as physics-guided neural network (PGNN), leverages the output of physics-
based model simulations along with observational features to generate predictions
using a neural network architecture. Further, we discuss a novel class of learning
objective for training neural networks, which ensures that the model predictions
not only show lower errors on the training data but are also consistent with the
known physics. We illustrate the effectiveness of PGNN for the problem of lake
temperature modeling, where physical relationships between the temperature,
density, and depth of water are used in the learning of neural network model
parameters. By using scientific knowledge to guide the construction and learning
of neural networks, we are able to show that the proposed framework ensures better
generalizability as well as physical consistency of results.

1 Introduction

The growing deluge of data [2, 4} [10] has made long-lasting impacts on the way we sense, commu-
nicate, and make decisions in every walk of our life [8]], through recent advances in data science
methodologies such as deep learning. Apart from transforming commercial industries such as retail
and advertising, deep learning is also beginning to play an important role in advancing scientific
discovery. Historically, science has progressed by first generating hypotheses (or theories) and then
collecting data to confirm or refute these hypotheses. However, in the big data era, ample data,
which is being continuously collected without a specific theory or hypothesis in mind, offers further
opportunity for discovering new knowledge. Based on the success of data science in applications
where Internet-scale data is available (with billions or even trillions of samples), e.g., natural language
translation, optical character recognition, object tracking, and most recently, autonomous driving,
there is a growing anticipation of similar accomplishments in scientific disciplines [6} |11} [18]]. To
capture this excitement, some have even referred to the rise of data science in scientific disciplines as
“the end of theory” [1]], the idea being that the increasingly large amounts of data makes it possible to
build actionable models without using scientific theories.

Unfortunately, this notion of black-box application of data science has met with limited success
in scientific domains (e.g., [3, 15, [16]), for two main reasons. First, scientific problems are often
under-constrained in nature as they suffer from paucity of representative training samples while
involving a large number of physical variables. Further, physical variables commonly show complex
and non-stationary patterns that dynamically change over time. For this reason, the limited number of
labeled instances available for training or cross-validation can often fail to represent the true nature of
relationships in scientific problems, leading to misleading conclusions. The paucity of representative
samples is one of the prime challenges that differentiates scientific problems from mainstream
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Figure 1: A representation of knowledge discovery methods in scientific applications. The x-axis
measures the use of data while the y-axis measures the use of scientific knowledge. Theory-guided
data science explores the space of knowledge discovery that makes ample use of the available data
while being observant of the underlying scientific knowledge.

problems involving Internet-scale data such as language translation or object recognition, where large
volumes of labeled or unlabeled data have been critical in the success of recent advancements in data
science such as deep learning. Second, while a common end-goal in data science is the generation
of actionable models, the process of knowledge discovery in scientific domains does not end at
that. Rather, it is the translation of learned patterns and relationships to interpretable theories and
hypotheses that leads to advancement of scientific knowledge, e.g., by explaining or discovering the
physical cause-effect mechanisms between variables. Hence, even if a black-box model achieves
somewhat more accurate performance but lacks the ability to deliver a mechanistic understanding
of the underlying processes, it cannot be used as a basis for subsequent scientific developments.
Further, an interpretable model, that is grounded by explainable theories, stands a better chance at
safeguarding against the learning of spurious patterns from the data that lead to non-generalizable
performance. This is especially important when dealing with problems that are critical in nature and
associated with high risks (e.g., healthcare).

An alternate approach to black-box models for knowledge discovery is theory-based models, which
are founded on core scientific principles and strive to advance our understanding of the physical
world by learning explainable relationships between input and output variables. These models can
range from solving closed-form equations (e.g. using Navier—Stokes equation for studying laminar
flow) to running computational simulations of dynamical systems (e.g. the use of numerical models
in climate science, hydrology, and turbulence modeling). However, a number of theory-based models
use parameterized forms of approximations for representing complex physical processes that are
either not fully understood or cannot be solved using computationally tractable methods. Calibrating
the parameters in theory-based models is a challenging task because of the combinatorial nature of
the search space. In particular, this can result in the learning of over-complex models that lead to
incorrect insights even if they appear interpretable at a first glance. For example, these and other
challenges in modeling hydrological processes using state-of-the-art theory-based models were the
subject of a series of debate papers in Water Resources Research (WRR) [[7, [14} [17].

Hence, neither a data-only nor a theory-only approach can be considered sufficient for knowledge
discovery in complex scientific applications. Instead, there is a need to explore the continuum between
theory-based and data science models, where both scientific theory and data are used in a synergistic
manner. This is the paradigm of theory-guided data science (TGDS) [12]] that attempts to address
the shortcomings of data-only and theory-only models by seamlessly blending scientific knowledge
in data science models (see Figure[I). By integrating scientific knowledge in data science models,
TGDS aims to learn patterns and models that have a sufficient grounding in physical principles and
thus have a better chance to represent causative relationships. TGDS further attempts to achieve



better generalizability than models based purely on data by learning models that are consistent with
scientific principles, termed as physically consistent models.

In this work, we discuss a novel framework that combines the power of deep learning with physics-
based models, termed as physics-guided neural networks (PGNN) [13]]. Specifically, we discuss a
novel class of physics-based learning objective for training neural networks, which ensures that the
learned networks not only admit to lower errors on the training data set but also produce outputs that
are consistent with our scientific understanding of the physical world.

2 Physics-guided Neural Network

The framework of physics-guided neural networks (PGNN) [13] aims to integrate knowledge of
physics in deep learning methods, to produce physically consistent outputs of neural networks. To
illustrate the role of physical consistency in ensuring better generalization performance, consider
the example of learning a neural network for a predictive learning problem using a limited supply
of labeled samples. Ideally, we would like to learn a network that shows the best generalization
performance over any unseen instance. Unfortunately, we can only observe the performance of a
network on the available training set, which may not be truly representative of the true generalization
performance (especially when the training size is small). In recognition of this fact, a number of
learning frameworks have been explored to favor the selection of simpler models that may have
lower accuracy on the training data (compared to more complex models) but are likely to have better
generalization performance. This methodology, that builds on the well-known statistical principle of
bias-variance trade-off [Sl], can be described using Figure @
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Figure 2: Scientific knowledge can help in reducing the model variance by removing physically
inconsistent solutions, without likely affecting their bias.

Figure 2] shows an abstract representation of a succession of neural network families with varying
levels of complexity (shown as curved lines), where M represents the set of least complex networks
(with small number of hidden nodes) while M3 contains highly complex networks (with large of
hidden nodes). Every point on the curved lines represents a neural network that a learning algorithm
can arrive at, given a particular realization of training instances. The frue relationship between the
input and output variables is depicted as a star in Figure[2] We can observe that the learned models
belonging to M3, on average, are quite close to the true relationship. However, even a small change
in the training set can bring about large changes in the learned models of M 3. Hence, M3 shows low
bias but high variance. On the other hand, models belonging to M are quite robust to changes in the
training set and thus show low variance. However, M shows high bias as its models are generally
farther away from the true relationship as compared to models of Mgj. It is the trade-off between
reducing bias and variance that is at the heart of a number of machine learning algorithms [[19} 5| 20].

In scientific applications, there is another source of information that can be used to ensure the selection
of generalizable models, which is the available scientific knowledge. By pruning candidate neural
networks that are inconsistent with known scientific principles (shown as shaded regions in Figure
[2), we can significantly reduce the variance of models without likely affecting their bias. A learning
algorithm can then be focused on the space of physically consistent models, leading to generalizable
and scientifically interpretable models. Hence, one of the overarching visions of TGDS is to include
physical consistency as a critical component of model performance along with training accuracy and
model complexity. This can be summarized in a simple way by the following revised objective of
model performance in TGDS:

Performance o Accuracy + Simplicity + Consistency.



There are various ways of introducing physical consistency in deep learning methods, in different
forms and capacities. First, scientific knowledge can be used in the design of neural network
architecture to restrict the space of models to physically consistent solutions, e.g., in the selection
of activation function or the pattern of connections among the layers. Second, we can also guide a
neural network learning algorithm to focus on physically consistent solutions, e.g., by initializing
the model with physically meaningful parameters, by encoding scientific knowledge as probabilistic
relationships, by using domain-guided constraints, or with the help of regularization terms or loss
functions inspired by our physical understanding. Third, the outputs of a neural network can also be
refined using available scientific knowledge, by using pruning or post-processing methods.

In our recent work [13]], we demonstrate an application of PGNN for modeling the temperature
of water in lakes. For this problem, a number of physics-based models have been developed that
involve parameters (e.g., parameters related to vertical mixing, wind energy inputs, and water clarity)
whose values can be set to default values or custom-calibrated for each lake if some training data is
available. Because this step of custom-calibrating is both labor- and computation-intensive, there is a
trade-off between increasing the accuracy of the model and expanding the feasability of study to a
large number of lakes. In our work, we used the simulation outputs of a physics-based model, namely
General Lake Model (GLM) [9], as input variables in the neural network framework to construct
hybrid-physics-data models. We further explored a novel class of physics-based loss functions that
exploit the physical relationships between the temperature estimates produced by the neural network
with other physical variables such as density of water at varying depths in the lake. The resultant
PGNN model shows improved generalization performance than both the black-box neural network
model (that is agnostic to the underlying physics) as well the state-of-the-art physics-based model
(that does not make effective use of the available data). The PGNN model additionally produces
physically meaningful results that can be used as inputs in other models of lake properties such as
water quality, thus resulting in advancement of scientific discovery.
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