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Abstract

The aim of this paper is to provide Deep Learning tools to aid the search for debris
of long-period comets. We describe an effort to automate the CAMS (Cameras
for Allsky Meteor Surveillance) data reduction pipeline to discriminate meteors
from other types of detection. The effort helps to process the data collected every
night from low-light video observations, and makes results available to the observer
the following day. Detections are classified as meteors or non-meteors using two
methods, a convolutional neural network (CNN), and a long short term memory
network (LSTM). Our achieved performance makes our models suitable to be
deployed on site and help alleviate the cognitive load on astronomers to classify
night detections.

1 Introduction

Long-period comets1 (LPC), due to their potentially large size and fast impact speeds of up to 72
km/s, contribute to the impact hazard on planet Earth along with short-period comets and asteroids.
These impacts can severely disrupt the ecosphere and entire human populations. Evidence indicates
that the impact of a comet or asteroid, having a diameter of about 10 km, was responsible for the mass
extinction of most species of dinosaurs. Impacts of future threatening asteroids could be mitigated if
given sufficient warning time. However, any new long-period comet type on an impact trajectory
with Earth would likely only be discovered 6-12 months before impact, when it becomes visible as
the Sun’s heat and wind start sublimating its icy surface and ejecting rocky debris.

To provide extra warning time, the orbits of the comet’s debris could be used by researches to guide
the search for comets while they are still far out, providing us years of extra warning time in case they
can be detected along that orbit. Most suitable is debris that was ejected during the previous return
of the comet to the inner Solar System, which will cause rare aperiodic meteor showers (outbursts).
Therefore, detecting those showers requires a continuous and global search [1]

Figure 1 shows how the debris evolves from a meteoroid coma into a meteoroid stream in one
revolution as a result of differences in orbital period between grains. The intersection point at Earth’s

1Comets that take at least 200 years to go around the Sun.
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Figure 1: A diagram showing debris trails formed following a previous LPC travel to the inner Solar
System. An LPC outburst happens when Earth (the blue point) cross those debris.

orbit (the node) of those orbits is not constant. As described by Jenniskens (1997), LPC outbursts are
due to gravitational perturbations on the individual meteoroid orbits, causing a periodic displacement
of the stream relative to Earth’s orbit, which follows the Sun’s reflex motion around the barycenter,
with dominating contributions by Jupiter (12-year period) and Saturn (30-year).

Given that the long term hazard posed by long-period comets is statistically comparable to other
naturally occurring events [2], it is important to design detection and prevention strategies in order to
mitigate potential impacts.

To do so, the night sky needs to be monitored for an extended period of time (∼ 60 years) and from
locations around the globe [1, 3]. The Cameras for Allsky Meteor Surveillance (or CAMS) is a
network of low-light video cameras, established by the SETI2 Institute in different locations across
the globe, that monitors the sky to detect meteors. CAMS has demonstrated to produce meteoroid
orbits that can be used to identify where a parent long-period comet may reside, when it is still many
years out.

Until now, processing the images collected by CAMS has required time-consuming human input. On
an average night, an astronomer receives -per camera- around 500 detections consisting of images
and light intensity curves (a sequence of measurements of how light intensity changes as detected
objects move in the sky). A total of 8,000 observations with 16 cameras per site.

Figure 2 presents examples of images captured by CAMS. Most of these turn out to be false detections,
such as planes, birds, clouds, etc. Sorting through these every night is not scalable.

To alleviate this, our goal is to improve and automate the classification of meteors from non-meteors
using deep learning tools. Specifically, we focus on processing images and light curves captured by
CAMS. To the best of our knowledge, this is the first time that deep learning techniques have been
applied to this endeavour.

Figure 2: Examples of images detected by CAMS.
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Table 1: Performance of our methods in the heldout test set.

Method Input Precision Recall F1

CNN Images 88.3 90.3 89.5
Random Forest Tracklets 90.0 80.6 84.9

LSTM Tracklets 90.0 89.1 89.6

2 Methodology

As a baseline, we trained a random forest [4] to classify light curve tracklets. For this classifier, we
focused on the time-series spatial and photometric data for each object. Given the heterogeneity
of the data (i.e. different numbers of data points on each tracklet - the duration of the detection is
different), we opted to mine metrics from these time-series data that describe the trajectories and light
curves of each object.

We calculated the coefficient of determination (R2) and residual standard deviation of a best-fit line
to the XY paths in the images, as well as the total distance traveled. Regarding the photometric
variations, we extracted several statistical measures of the shape of their light curves including the
mean intensity, median absolute deviation (MAD), skew, and kurtosis. We also included in this
model two measures of the timescale of the event: the total time observed and the optimal period
from a fast Fourier transform on the light curves. We used the random forest implementation from
http://scikit-learn.org [5].

As an alternative to hand crafting features from the light time series, we fed the raw measurements of
light intensity, XY position and time stamps to a Long-Short Term Memory network (LSTM) [6].
The LSTM encodes the light curve tracklets into a latent space, and learns to predict whether or not
the tracklet corresponds to a meteor. We used one hidden layer and a softmax classifier. We used
cross-validation to determine the number of hidden units, and found that 1,000 units worked well.
We used a a batch size of 128 tracklets. We set the maximum number of steps for each tracklet to
32, and zero padded or discarded extra steps, as necessary. We had 200,000 tracklets of light curves,
where ∼ 3% belonged to the meteor class. We randomly split the data into training (60%), validation
(20%), and a heldout test (20%) set.

In addition, we trained a Convolutional Neural Network (CNN) [7] that discerns images of meteors vs.
other objects in the sky. As in common practice, our convolutional layer consists of small, learnable
filters. During the forward pass, we convolve each filter with the input by successively computing dot
products between small windows of the input and the filter. As we slide the filter across the input,
we produce an activation map that gives the responses of that filter at every spatial position. We use
backpropagation with stochastic gradient descent to learn how to update the weights to minimize a
cross-entropy loss function.

We used five convolutional layers followed by two fully connected layers and a binary softmax
classifier. Dropout [8] and max-pooling layers were used. The software library Keras [9] was used to
train both the LSTM and CNN.

The image dataset consisted of about 34,110 gray scale images, where ∼ 23% were meteors and the
rest corresponded to other objects. We randomly split the data into a training (80%), validation (10%)
and heldout test (10%) set. We performed standard data augmentation techniques on instances of the
positive class, such as rotation and flipping. The size of each image is 480x640. We decided to keep
the original image size since reducing the image size led to lower performance.

3 Results and Discussion

Table 1 presents our results on the heldout test set. Our CNN achieves precision and recall scores of
88.3% and 90.3%, respectively3. The LSTM achieves a precision of 90.0% and a recall of 89.1%.
Whereas the random forest classifier achieves 90.0% precision and 80.6% recall. One key advantage

3Precision indicates what proportion of instances we classified as meteors were actually a meteor. Recall is
what proportion of actual meteors were classified as meteors. This means that the CNN would make 11.7% false
detections and miss 9.7% of all meteors in the data.
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of using Deep Learning is that we did not have to hand-engineer the meaningful features from both
images and light curves. The CNN and LSTM networks can learn these on their own.

We did a qualitative evaluation by visually inspecting the network’s predictions. Figure 3 presents
some examples. False negatives often happen when meteors are very faint and hard to see. False
positives tend to occur when there is an object (like a satellite) that looks very similar to meteors.

It takes an average of 1.8s. to perform one forward pass of one image on an off-the shelf laptop4 with
no GPU. This makes it very suitable to be deployed on site, where the cameras are located.

Compared to human performance, an expert at peak productivity can annotate about one image per
second and achieve 99% precision and recall. While we would desire to achieve or surpass human
performance, it is not a requirement for the automation success. It is not sustainable for an astronomer
to perform this process every day. We can tolerate inaccuracies of up to about 10% given that we can
1) remove the drudgery of human annotation and save time through an automated annotation process,
and 2) provide a cleaner data set that feeds the downstream process of calculating meteoroids’ orbits.
Ultimately our tools free the astronomer from this low-cognitive task and help the search for debris
of potentially dangerous long-period comets.

Figure 3: Examples of classification results.

4 Conclusions

In order to fully automate meteor shower detection and classification from video observations,
we applied Deep Learning methods: convolutional neural networks and long-short term memory
networks. Both methods enabled a meteor/non-meteor classifier that output a probability score. The
CNN took as input a set of max-pixel image frames, whereas the LSTM took as an input the values
of time-series light intensity observations.

Performance of both methods were similar. Both performed well enough to be deployed on site and
enable an automated data reduction pipeline for meteor triangulations.

Our methods allow us to provide cleaner data to the subsequent process of identifying meteoroid
orbits potentially associated with long-period comets that pass close to Earth’s orbit. When they were
ejected in the previous return, the orbits of the meteoroids should directly trace that of their parent
comet. Taking into consideration uncertainties in the orbital parameters of these meteoroids, the
search space for these hazardous comets can be narrowed down. These regions can be then probed
with dedicated, deep sky surveys searches to attempt to locate these long-period comets.
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