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Abstract

Correctly identifying the nature and properties of particles produced at the Large
Hadron Collider is a crucial task for fully exploring sub-nuclear length scales in
search of new physical phenomena. This work addresses the active research prob-
lem of object identification in the context of elementary particles interacting with
a multi-layer, heterogeneously-segmented electromagnetic calorimeter. This work
is positioned within the physics literature trend of replacing domain-specific fea-
ture engineering with the design and augmentation of deep learning approaches
from the computer vision literature. We propose a multi-stream DenseNet ar-
chitecture that takes advantage of lower level detector information. We pro-
vide performance and parameter-efficiency comparisons with other computer vi-
sion approaches, as well as standard classification techniques based on shower
shapes — engineered features that describe geometric properties of the particle cas-
cades. Experiments are conducted on public simulated datasets to provide useful
benchmarks for future technical improvements. The DenseNet-style architecture
achieves state-of-the-art performance on both e* — ~ and e* — 7T classification
tasks.

1 Introduction

Treating calorimeters as digital cameras has had a long history in high energy particle physics [B4,
[6]. Calorimeter cells can be treated as pixels in a camera and energy deposited can be interpreted as
pixel intensity. Recently, deep neural networks have revolutionized image processing, with signifi-
cant improvement over traditional techniques on a variety of tasks. Many of these modern techniques
have already been applied to high energy physics in the context of jer images [[[8] for classifica-
tion [I9, 4, I3, [0, 23, 26, 0, TT], regression [25], and generation [20] as well as in the context of
neutrino identification and classification [B1, 12, G, B7] in liquid argon time projection chambers.

The jet image generation work has recently been extended to particle showers in a longitudinally
segmented calorimeter [’Y] using Generative Adversarial Networks (GANs). The adversary to the
generative network is a classifier network that learns to distinguish fake from real images. This
classifier takes as input calorimeter images and performs binary classification; it is therefore natural
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Table 1: Specifications of the calorimeter layers

Depth in 2 Width of cell in Width of cell in y
Layer Number . o ction (mm) Neelis.e  girection (mm) Neelisy  girection (mm)
0 90 3 160 96 5
1 347 12 40 12 40
2 43 12 40 6 80

to ask how well this architecture performs when applied to the task of particle identification. In this
paper, we explore the classification of particles in a longitudinally segmented calorimeter using the
techniques developed in Ref. [29] as well as other ideas from modern computer vision.

Traditional techniques for identifying particles in a longitudinally segmented calorimeter rely on a
small number of shower shapes. These engineered features of the the three-dimensional shower
profile are powerful tools for identifying and calibrating photons and electrons [B, 2, 5, 6] as well
as extracting pointing information for photons [4, []. Our goal is to show how much one can gain
from using modern machine learning techniques, treating calorimeter region around one particle
shower as digital image with multiple layers. Unlike a typical RGB image, longitudinally segmented
calorimeter images are sparse, without smooth features or sharp edges, and have a causal relationship
between layers so it is not sufficient to treat each layer independently. For these reasons, state-of-
the-art image processing techniques must be adapted to fit for this application domain.

This paper presents an application of deep neural network techniques for electron, photon, and pion
identification and regression in a longitudinally segmented electromagnetic calorimeter. Similar
efforts, using similar datasets, exist within the high energy physics community. We provide a set of
baselines to help reduce the search space towards optimal solutions.

2 Dataset

We utilize a public dataset [B0, 29] composed of 500,000 e*, 500,000 7+, and 400,000 v showers
induced by the electromagnetic and nuclear interactions that the incident and secondary particles
undergo as they propagate through the designed electromagnetic calorimeter.

The geometry of the detector, built from a modified version of the GEANT4 B4 example, consists
of a cubic section along the radial (z) direction of V' = 480 mm?® of an ATLAS-inspired electro-
magnetic calorimeter, at a distance of zp = 288 mm from the origin. The volume is segmented
along its radial dimension into three layers of depth 90 mm, 347 mm, and 43 mm, each composed
by flat alternating layers of lead (absorber) and LAr (active material) of thickness 2 mm and 4 mm,
respectively. Each of the three sub-volumes has a different resolution, with voxels of dimensions
summarized in Table .

3 Method

The proposed DenseNet-style architecture is tested, along with a set of baseline architectures, on two
two classification tasks (e™ versus v, and e’ versus 7). The scope of this approach is to document
both successful and unsuccessful attempts, and to inform the community on what techniques appear
to be more promising and worth pursuing.

All neural networks are build using KERAS v2.0.6 [I/] with TENSORFLOW V1.2.1 [K] as a back-
end, and trained on an NVIDIA GeForce GTX TITAN X with the Adam [24] optimizer to minimize
the cross-entropy between the predicted and target distributions. After a baseline hyperparameter
scan, the learning rate is set to 0.001 for all networks on the e™ — ~ task, and 0.0001 in the e™ — 7T
task.

Six-Layer Fully-Connected Network on Shower Shapes The first baseline is a feed-forward neu-
ral network with 20 shower shape input variables. The architecture consists of five fully connected
- LeakyReL U [Z7] - dropout [B3] - batch normalization [22] blocks, with hidden representations of
size 512, 1024, 2048, 1024, and 128 respectively, and a final one-dimensional output with sigmoid



activation. The network has a total of 4,873,985 trainable parameters, and the batch size is chosen
to be 128.

Six-Layer Fully-Connected Network on Individual Pixel Intensities The network structure is
identical to the one described above, except for the first layer that now receives as inputs the 504
calorimeter pixel intensities from a shower representation, as opposed to the 20 shower shape vari-
ables used in the previous benchmark. The network now has a total of 5,121,793 trainable parame-
ters, and the batch size is chosen to be 128.

Three-Stream Locally-Connected Network Locally-connected layers have shown promising re-
sults compared to their convolutional counterpart in both classification and generation tasks [0, Y,
3] on high energy physics datasets, where domain-specific preprocessing techniques allow to rotate,
crop, and center images with very high sparsity, dynamic range, and physical meaning associate to
pixel intensities [IT8]. Unlike the case of natural images, this application domain has been shown to
benefit from the location specificity of filters learned by locally-connected layers.

These were recently employed in the design of both the generator and the discriminator networks in
Location-Aware Generative Adversarial Networks (LAGAN) [20], and their multi-stream evolution
(CaloGAN) [29].

We draw inspiration from previous applications in generative modeling to test a similar design for
the classification tasks presented in this work.

The network consists of three streams of LAGAN-style blocks, each aimed at processing images
from one of the three calorimeter layers, and each containing a convolutional layer and three sets of
locally-connected layers, batch normalization, and leaky rectified linear units. The features learned
from the three streams provide different representations of individual showers, and are then concate-
nated and processed through a top fully-connected layer with a sigmoid activation. The network has
a total of 17,525,697 trainable parameters, and the batch size is chosen to be 128.

Three-Stream Convolutional Network Although locally-connected layers were empirically
found to work well with jet images centered at the origin [’8], the advantage of using them over
convolutional layers is expected to fade away as showers are produced at different incoming angles
and positions. In fact, convolutional layers are designed to exploit feature translation invariance.

The architecture in the previous paragraph is modified by replacing all locally-connected layers with
equivalent convolutional layers. The new network has a total of 7,434,881 trainable parameters, and
the batch size is chosen to be 128.

Three-Stream DenseNet Densely Connected Convolutional Networks (DenseNets) [21] were in-
troduced as an elegant solution to maximize information flow by reducing the path from input to
output, in order to counter the vanishing gradient problem in very deep convolutional networks.
DenseNets devise connections such that every layer receives as inputs the concatenated feature maps
from every previous layer, and contributes its feature maps to every subsequent layer. These redun-
dant connections favor feature reuse and persistence, to the point that the last classification layer will
have at its disposal all of the features built by all previous layers in the network, therefore gaining
access to different levels of feature representation. The network is, by design, very parameter effi-
cient, with only 351,057 trainable parameters. To match the other benchmarks, the batch size is set
to 128.

3.1 Experimental Results

We examine the performance of the binary classifiers described in Sec. B using receiver operating
characteristic (ROC) curves (Fig. M). The different efficiency ranges depicted on the axes of Fig-
ures and [[(b] illustrate the difference in complexity between the two tasks: while charged pions
are easier to separate from positrons and only the high signal efficiency range is displayed, photons
share similar signatures in the electromagnetic calorimeter compared to positrons, yielding worse
overall background rejection.

In both classification tasks, the DenseNet outperforms all other architectures and does so with one
or two orders of magnitude fewer parameters. In the harder e versus 7 scenario, the relative
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Figure 1: These performance plots illustrate the trade-off between maximizing the true positive ratio
for positron identification (on the z-axis) and maximizing the background rejection, the inverse of
the false positive ratio (on the y-axis). The five curves represent the performance of the following
classifiers: in blue, the three-stream DenseNet; in orange, the three-stream convolutional network;
in green, the three-stream locally-connected network; in red, the fully-connected network on shower
shapes; in purple, the fully-connected network on individual pixel intensities.

Table 2: Percentage relative increase or decrease in -y rejection at five different e™ efficiency working
points compared to the baseline fully-connected network trained on shower shape variables

et efficiency
60% 70% 80% 90% 99%

FCN on shower shapes

< FCN on unraveled pixels -08% -07% -1.0% -12% -2.0%
B 3-Stream Locally-Connected +3.0% +32% +42% +4.7% +4.1%
= 3-Stream Conv Net +4.7% +54% +59% +6.5% +5.5%

3-Stream DenseNet +73% +73% +1.7% +7.7% +6.4%

Table 3: Percentage relative increase or decrease in 7™ rejection at five different et efficiency
working points compared to the baseline fully-connected network trained on shower shape variables

e efficiency

96% 97% 98% 99% 99.99%
FCN on shower shapes - - - - -
< FCN on unraveled pixels -144% -7.6% +0.76% +0.0% -34.6%
8 3-Stream Locally-Connected +2.3% +4.8% +11.9% +22.3% —-43.7%
= 3-Stream Conv Net +20.3% +31.0% +17.9% +32.4% -6.8%
3-Stream DenseNet +81.6% +107.5% +100.0% +90.1% +34.9%

performance differentials with respect to the shower shapes-based classifier are provided, for five
different e™ efficiency points, in Table B. Similar results are provided in Table B for the e versus
7T classification task.

4 Conclusion

We benchmarked a range of machine learning methods on a particle identification task using a pub-
licly available dataset. We highlighted unique properties of physical datasets that demand careful
architecture design considerations. With domain specific evaluation constraints in mind, emphasis



was put on the computational and parameter efficiency of the various models. DenseNets were
identified as highly a performant and efficient first solution.

Ongoing work on model interpretability identified critical regions in image space where the
DenseNet and the baseline shower shapes-based tagger are not in agreement on the shower labels.
Forthcoming work will provide evidence to conclude that the DenseNet is learning information be-
yond what is explained by the shower shapes, and it is correctly classifying these subsets of showers
despite their apparent similarity to the opposite class. Further studies will be necessary to investigate
what extra knowledge the DenseNet is relying on, and how this information can be used to augment
the shower shapes.
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