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Abstract

Neutrinos can help us further our current understanding of the fundamental laws
of the universe. The NOvA experiment aims to study the oscillation of neutrinos.
We developed a convolutional neural network based energy estimator for electron
neutrinos and electron showers in the NOvA detectors to improve experiment
analysis. Our method achieves state-of-the-art performance on electron neutrino
and electron shower energy regression compared to traditional methods.

1 Introduction

Neutrinos are nearly massless fundamental particles. They rarely interact with matter and are difficult
to detect. Their strange properties make them useful for understanding the fundamental laws of
physics. The NOvA experiment at Fermilab focuses on measuring neutrino oscillation, mass hierarchy
and CP violation. In this work, we aim to improve energy reconstruction for neutrino oscillation
experiments in NOvA[4]. This is also important for the experiment T2K[2] and the next-generation
neutrino oscillation experiments DUNE[3], Hyper-K[1], JUNO[12], and PINGU[9] which rely on
similar analysis methods.

Neutrino oscillation is a function of the neutrino energy. It is therefore important to reconstruct the
energy of the neutrino in an observed interaction. Most of the energy deposited in the detector during
an electron neutrino interaction comes from an electron shower. For this reason, it is also important
to reconstruct the electron shower energy. In this article, we describe a convolutional neural network
(CNN) based energy estimator to reconstruct electron neutrino energy recorded in NOvA. We use the
same model architecture to train another estimator for electron shower energy in those interactions.

2 The NOvA Experiment

NOvA is a neutrino experiment optimized to observe the oscillation of muon neutrinos to electron-
neutrinos. NOvA uses a 14-kt liquid scintillator detector in Ash River, Minnesota. This is used to
detect the oscillated muon neutrino beam. The beam is produced 810 km away at Fermilab. The
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NOvA detectors are fine grained, highly active tracking calorimeters. They consist of plastic (PVC)
extrusions filled with liquid-scintillator. A wave shifting fiber is used to detect excitation from
particles in the liquid-scintillator. Each cell extends the full width or height of the detector. Extrusions
are assembled in alternating layers of vertical and horizontal extrusions. Measurements from a cell
do not give information about the location in the cell. For this reason, hits caused by neutrino events
are recorded in an x-z view and a y-z view hit map instead of a 3D image. The far detector has a total
of 344,064 cells.
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Figure 1: Shown are x− z and y − z views of a typical electron neutrino interaction example. Red
shows the hits caused by the electron, blue shows hits from the hadronic component. The intensity of
each pixel reflects the magnitude of the deposited energy.
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Figure 2: Diagram of the x− z and y − z views of electron shower input examples. The intensity of
each pixel reflects the amount of energy deposited in the cell.

2.1 Sample

The standard NOvA simulation is used for the CNN training, validation and testing. The NOvA
detector simulation chain is described in [5]. The νe CC event reconstruction begins with clustering
cell hits by space-time coincidence. The procedure collects hits from a single neutrino interaction
(slice). The slices then serve as the foundation for all later reconstruction stages [7]. For each slice,
a modified Hough transform is used to identify prominent straight-line features. Then the lines are
tuned in an iterative procedure until they converge to the slice’s interaction vertex. Prong clusters are
then reconstructed using a Fuzzy K-means algorithm where the interaction vertex serves as seed [13].

The νe CC interactions are tagged by true neutrino interaction information in the simulation. Each
input to the regression CNN for νe CC energy includes two separate pixel maps in x-z and y-z detector
views. The cell closest to the reconstructed interaction vertex in each view is chosen as the reference
cell. Cells are contained within -30 to 120 planes in the z-direction. In the x(y)-direction cells are
included within -70 to +70 cells. Therefore, the size of the input image to the CNN is 151× 141 in
each view. The image size is thus large enough to contain the entire νe CC interaction while avoiding
hits caused by noise and cosmic rays in the same slice. Keeping the image size small also reduces
computational complexity during training. Calibrated cell energy is used as the intensity of each
pixel in the input pixel maps. Finally, energy is position dependent in the detector. This feature is
accommodated by using x-, y- and z-coordinates of the reconstructed vertex as additional inputs of
the to the fully connected layers of the CNN. For the training of the νe CC energy regression CNN
we use the complete interaction as input. An example of such an input is shown in figure 1. For
training we use 612868 interaction samples of this type.

For the electron shower energy CNN, cell hits from the reconstructed shower are used as the input.
Figure 2 shows one example of this. The image size for the shower CNN is the same as the νe CC
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Figure 4: The CNN architecture used for energy regression.

CNN. We use 667000 shower examples including their reconstructed vertices for training of the
shower CNN.

3 Methods

3.1 Data Processing

The pixel values of images are typically normalized before CNN training. The purpose of this is to
increase numerical stability and gradient quality. Here most image pixels are zero and the non-zero
pixel values tend to be small. We apply three normalization methods: mean zero unit variance
standardization, log transformation and constant scaling. The three methods produce similar results.
Therefore, a constant scaling factor of 100 is chosen after visual inspection of the input spectrum for
νe and electron. During training, data are processed in batches.

3.2 CNN Details

The model inputs consist of x − z view and y − z view images as well as the recon-
structed vertex position. The νe energy model takes in event images while the shower en-
ergy model takes in shower images. For the output, the νe energy model returns the pre-
dicted neutrino energy while the shower energy model returns the predicted shower energy.

Figure 3: The plot compares resolutions using dif-
ferent loss functions. The blue curve is mean abso-
lute scaled error, the green curve is mean absolute
error, and the red curve is mean squared error.

Our CNN utilizes a siamese network structure
where each sub-network processes an image
from one view. Features are not shared between
sub-networks to encourage learning from both
views. Each sub-network has three Inception
modules [14] to simultaneously extract features
of different dimensions. A CNN with another
Inception module on top of the sub-networks
produces the final output after the vertex po-
sition is added. Each convolutional layer in-
cluding those in the Inception modules have 32
filters; the fully connected layer has 200 units.
The network architecture is shown in diagram 4.
The architecture builds on the work done in [6].
In our experiments, using additional Inception
modules does not improve model performance.
This is expected because our images are sparse
relative to natural images.

Since the energy distributions are right skewed, we are interested in the energy resolution Ereco

Etrue
.

To evaluate model performance, we analyze histograms of the resolution on the test set and their
corresponding root mean square (RMS). As training loss we investigate the mean squared error and
mean absolute error. Given the same resolution, we can expect larger errors for larger energies; the
mean squared error would give more weight to high energy examples. This effect is reduced yet
still existent in the mean absolute error. We consider scaling the error by the true value. Using a
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Baseline L2 FC L2 Dropout
1e-4 1e-5 1e-6 1e-5 0.1 0.2

Val Loss 0.08444 0.08538 0.08397 0.08398 0.08429 0.08458 0.08696
Table 1: Table showing validation loss 3.2 for the νe network. L2 refers to L2-weight-penalty on all
convolutional layers, FC L2 refers to L2-weight-penalty on the fully connected layer and Dropout
refers to Dropout applied to the fully connected layer.

squared scaled error results in extremely large loss values for small energies. We therefore use the
mean absolute scaled error given by:

L =
1

n

n∑
i

∣∣∣∣oi − ti
ti

∣∣∣∣ (1)

where oi is the CNN output, ti the target energy and n the batch size. It can be seen that this optimizes
a shifted version of the energy resolution: Ereco−Etrue

Etrue
= Ereco

Etrue
− 1. Figure 3 shows validation

performances for mean absolute scaled error, mean absolute error and mean squared error. We also
investigate the effect of regularizers on the regression CNN. We consider an L2 weight-penalty on
the convolutional layer weights or the fully connected layer weights and dropout. Best validation
losses are shown in table 1. It can be seen that small values of L2 weight penalty on the convolutional
layers improves validation performance. Results presented in section 4 refer to the baseline model.

The models are trained with stochastic gradient descent using the ADAM algorithm [11]. We choose
a batch size of n = 128 and an initial learning rate of 1e− 3 with learning rate reductions of 10 when
the validation loss shows no improvement larger than 0.004 for 4 epochs. Models are trained for
100 epochs or until the validation loss does not increase by at least 0.001 for 5 epochs. The weights
from the epoch with the best validation loss are kept. All models are implemented in Keras [8] with
Tensorflow backend. For testing and production, the model weights are transferred to Caffe [10]
which is integrated in the NOvA software framework.
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Figure 5: Plot of results for electron neutrino energy (left) and electron shower energy (right). For
each plot the traditional reconstruction method is shown in blue and the pink curve is the CNN based
method. A Gaussian curve is fitted to each histogram and its standard deviation is given as RMS
values for each method.

4 Results and Future Work

We introduced a Convolutional Neural Network based energy regressor for the NOvA detectors. The
method shows promising results for electron neutrino energy and electron shower energy prediction.
Figure 5 compares results for the CNN method against the previous best results. The taller peaks for
electron neutrino energy and electron shower energy indicate smaller relative test errors. In particular,
the CNN improves the RMS by 11% for νe CC energy reconstruction. For electron shower energy
reconstruction the CNN shows an improvement of 21% over the current best method. We note that
this method’s testing is entirely based on simulation. Results are therefore preliminary. Our next step
is to apply this method to muon neutrino energy and muon energy. The challenge in this is that muons
have longer trajectories which require larger input images. Furthermore, we aim to combine our
efforts with work at NOvA on event and particle classification. It is of particular interest to combine
these models into one to reduce the computational cost during prediction.
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