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Motivation: Switching Between User Requests
• FEL facilities support a wide variety of scientific 

endeavors (e.g. imaging protein structures1, understanding 
processes like photosynthesis2, origin of material properties3)

[1] J.-P. Colletier, et al.,"De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure," Nature , vol. 539, pp. 43–47, Sep. 2016.
[2] I. D. Young, et al., "Structure of photosystem II and substrate binding at room temperature,” Nature , vol. 540, pp. 453–457, Nov. 2016.
[3] M. P. Jiang, et al., "The origin of incipient ferroelectricity in lead telluride," Nature Communications, vol. 7, no. 12291, Jul. 2016.
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Would be nice to have a tool that can quickly give suggested 
settings for a given photon beam request, is valid globally, and 
can adapt to changes over time
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Compact, THz FEL design based on previously operational TEU-FEL 3 – 6 MeV electron beam
200 – 800 𝜇m photon beam

Previously operated at University of 
Twente in the Netherlands

Was going to be re-built at CSU: 
have simulation from design studies



Starting Smaller:  A Case Study

This is an appealing system for an initial study because it has a small number of machine components, yet 
it exhibits non-trivial beam dynamics. 

Compact, THz FEL design based on previously operational TEU-FEL 3 – 6 MeV electron beam
200 – 800 𝜇m photon beam

Previously operated at University of 
Twente in the Netherlands

Was going to be re-built at CSU: 
have simulation from design studies
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How to get the right wavelength?

FEL output is related to beam parameters at the entrance of the undulator

Roughly speaking:
• Beam energy determines FEL wavelength
• Beam size (𝛽) and divergence (𝛼) need to be set to minimize beam losses
• Beam emittance (𝜀) impacts FEL gain
• 𝛼, 𝛽, 𝜀 are defined in the position-momentum phase space of the beam
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How to get the right wavelength?

Quadrupole electromagnets are used to match the beam into the undulator

• Focus in one transverse plane and defocus in the other 

• A pair provides net focusing 

• In principle only affects 𝛼, 𝛽	
(but beam self-fields can thwart this à also affects 𝜀 )

force on beam
B field



Photoinjector determines initial beam properties and accelerates the beam
• Electrons generated via photoelectric effect (laser incident on cathode) 

• Beam energy dominated by RF power setting (acceleration in cavity)

• Solenoid compensates for strong beam self-fields (improves emittance)

• Bucking coil minimizes magnetic field on the cathode (improves emittance)

How to get the right wavelength?



End goal: get the right beam parameters at the undulator entrance



First: Learn a Model from Physics-Based Simulation  

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes beam self-fields (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil



First: Learn a Model from Physics-Based Simulation  

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes beam self-fields (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil
• Unfortunately: distribution restricted, source code not 

available, and compiled for windows à couldn’t just run 
a lot of interactions with controller on a cluster



First: Learn a Model from Physics-Based Simulation  

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes beam self-fields (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil
• Unfortunately: distribution restricted, source code not 

available, and compiled for windows à couldn’t just run 
a lot of interactions with controller on a cluster

Decided to learn a neural network model from simulation:
• faster-executing than physics-based simulation
• can update with measured data
• would be nice to have a differentiable model



First: Learn a Model from Physics-Based Simulation  

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes beam self-fields (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil
• Unfortunately: distribution restricted, source code not 

available, and compiled for windows à couldn’t just run 
a lot of interactions with controller on a cluster

Decided to learn a neural network model from simulation:
• faster-executing than physics-based simulation
• can update with measured data
• would be nice to have a differentiable model

More broadly: machine time is expensive, mistakes can be costly,
and simulations don’t always match the machine well 
∫àà Sample efficiency matters a lot (both with slow sim and machine)
à Learning a machine model using simulation results and updating

it with existing measurements can aid controller development



First: Learn a Model from Physics-Based Simulation  

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes beam self-fields (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil
• Unfortunately: distribution restricted, source code not 

available, and compiled for windows à couldn’t just run 
a lot of interactions with controller on a cluster

Decided to learn a neural network model from simulation:
• faster-executing than physics-based simulation
• can update with measured data
• would be nice to have a differentiable model

More broadly: machine time is expensive, mistakes can be costly,
and simulations don’t always match the machine well 
∫àà Sample efficiency matters a lot (both with slow sim and machine)
à Learning a machine model using simulation results and updating

it with existing measurements can aid controller development



Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings
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policy à model not invertible, but can pre-train policy 
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Training the Control Policy (v0)

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Then test policy directly on simulation

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

Every nth iteration, take batch of s', p' sampled from D,
run through physics simulation, and update the model



Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)



Example of what the training data looks like
(quads in this case)

Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)



Example of what the training data looks like
(quads in this case)

Bulk beam parameter estimation relies on good statistics 
à only train on those outputs when transmission > 90%

Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥𝑦, 𝛽𝑥𝑦, 𝜀𝑥𝑦, E, Np)
- 5.7-MeV run used for validation set



First study: focus on target 𝛼, 𝛽 for a given energy 
à don’t allow variation in gun settings beyond known optima
à exclude emittance in cost

Example of what the training data looks like
(quads in this case)

Bulk beam parameter estimation relies on good statistics 
à only train on those outputs when transmission > 90%

Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥𝑦, 𝛽𝑥𝑦, 𝜀𝑥𝑦, E, Np)
- 5.7-MeV run used for validation set



First study: focus on target 𝛼, 𝛽 for a given energy 
à don’t allow variation in gun settings beyond known optima
à exclude emittance in cost

Example of what the training data looks like
(quads in this case)

Bulk beam parameter estimation relies on good statistics 
à only train on those outputs when transmission > 90%

Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)

Policy: 30-30-20-20 tanh nodes in hidden layers
- inputs/outputs opposite the above (except Np) 
- random target energies, 𝛼() = 0, 𝛽() = 0.106
- exclude 4.8 – 5.2 MeV range for validation

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥𝑦, 𝛽𝑥𝑦, 𝜀𝑥𝑦, E, Np)
- 5.7-MeV run used for validation set



Policy: 30-30-20-20 tanh nodes in hidden layers
- inputs/outputs opposite the above (except Np) 
- random target energies, 𝛼() = 0, 𝛽() = 0.106
- exclude 4.8 – 5.2 MeV range for validation

First study: focus on target 𝛼, 𝛽 for a given energy 
à don’t allow variation in gun settings beyond known optima
à exclude emittance in cost

Example of what the training data looks like
(quads in this case)

- weights/biases updated with AdaMax - batch size of 200
- implemented in Theano and lasagne

Bulk beam parameter estimation relies on good statistics 
à only train on those outputs when transmission > 90%

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥𝑦, 𝛽𝑥𝑦, 𝜀𝑥𝑦, E, Np)
- 5.7-MeV run used for validation set

Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)
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Controller ability to reach 𝛼(,) = 0 and 𝛽(,) = 0.106 in one iteration



Initial Model and Policy Performance

Summary of Model Performance

Controller ability to reach 𝛼(,) = 0 and 𝛽(,) = 0.106 in one iteration

Example of Model Performance 
on Validation Set

First study: focus on target Twiss parameters and don’t allow variation in gun settings beyond known optima

What this means: for a given energy, the controller will immediately reach the desired beam size to within about 10% and 
the beam will be close to a waist, requiring minimal further tuning (assuming no drift…)



Presently working on the next steps for the complete study

• Including minimization of emittance + more freedom with  
injector settings
• Requires finer start-to-end adjustments, so more simulation data was 

needed
• Larger network needed to capture relationships accurately in model

• Need to see how well it does with machine drift
• e.g. deviation between settings and real values, deviation in responses

• Need to compare with other methods
• Online optimization methods used in accelerators 
• Try comparing with some model-free RL benchmarks (e.g. TRPO)

• Have plans for trying this approach on an operational machine

• Other tweaks:
• Specify change in setting rather than setting
• Weights of cost function should be tuned      

Example of Model Performance on Validation Set



Conclusion

• Initial study for fast switching between beam energies while preserving 𝛼, 𝛽	looks 
encouraging

• Continuing with more complete study

• Will be interesting to see how this might scale to a larger accelerator system




