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Gravitational Waves

— Numerical relativity

Reconstructed (wavelet)
B Reconstructed (template)
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Source: ligo.org
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FIRST Cosmic EVENT OBSERVED
IN GRAVITATIONAL WAVES AND LIGHT

Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the

entire electromagnetic spectrum.

Joint observations independently confirm
Einstein's General Theory of Relativity,
help measure the age of the Universe,
and provide clues to the origins of
\\heavy elements like gold and platinum

On August 17,2017, 12:41 UTC, Within two seconds, NASA's

LIGO (US) and Virgo (Europe) detect Fermi Gamma-ray Space Telescope
gravitational waves from the merger detects a short gamma-ray burst from a

of two neutron stars, each around region of the sky overlapping the LIGO/Virgo
1.5 times the mass of our Sun. This is positien. Optical telescope observations

the first detection of spacetime ripples pinpoint the origin of this signal to NGC 4993,
from neutron stars. a galaxy located 130 million light years distant.
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The Royal Swedish Academy of Sciences has decided to award the

2017 N OBEL PRIZE IN PHYSICS
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Classification & Regression



Numerical Relativity - Supercomputing
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Method?

Matched-Filtering:

Compare an input image with
millions of photos of cats and
dogs and see which matches
best.

Template matching is not
scalable

Solution:

Deep Learning!

We want to build this....

classifier
f: XY

!

Y ~ the labels {“cat”, “dog”}

X~ theimages
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Source: https://www.slideshare.net/andrewgardner5811/deep-learning-for-data-scientists-dsatl-talk-alpharetta-20140108



Deep Learning

Overview

e Very long networks of artificial ~ InPut layer

neurons (dozens of layers)

e State-of-the-art algorithms for face
recognition, object identification,
natural language understanding,
speech recognition and synthesis,
web search engines, self-driving cars,
games (Go) etc.

Source: https://cs231n.github.io/
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hidden layer 1 hidden layer 2

e Does not require hand-crafted
features to be extracted first

e Automatic end-to-end learning

e Deeper layers can learn highly
abstract functions
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Signal Processing with Convolutional Networks

Our method: Deep Filtering

CNNs for directly processing highly noisy time-series data for classification and regression.

Advantages

Can process raw/whitened data
Automatically learns optimal strategies
Train once. Constant-time for evaluation
Optimized hardware (GPUs, FPGAS)

Resilient to glitches, non-stationary noise

Does not perform template matching
Learns patterns connecting signals
Interpolates to new templates

Small and efficient (few MBs)

14



Des'gnlng 1 -D CNNS Input (1s, 8192Hz) vector (size: 8192)
1 Reshape Layer tensor (size: 1x1x8192)
2 Convolution Layer tensor (size: 16 x1x8177)
3 Pooling Layer tensor (size: 16 x 1x2045)
- Explored only simple designs. 4 Ramp tensor (size: 16 x 1x2045)
5 Convolution Layer tensor (size: 32x1x2017)
6  Pooling Layer tensor (size: 32 x 1x 505)
- Up to 4 dilated convolutional layers | 7 Ramp ierstnszess el )
8 Convolution Layer tensor (size: 64 x1x477)
and 3 fully connected layers. 9  Pooling Layer tensor (size: 64 x 1x 120)
10 Ramp tensor (size: 64 x 1x 120)
11  Flatten Layer vector (size: 7680)
2 nets: Classifier for detection; 12 Linear Layer vector (size: 64)
13 Ramp vector (size: 64)
Predictor for estimating source 14 Linear Layer vector (size: 2)
parameters 15  Softmax Layer vector (s!ze: 2)
Output vector (size: 2) ks




Whitened Strain

Using Real LIGO Data

1. Added real noise from LVT151210 and GW151226 for training (4096s each).
Open source, data taken from hiips://losc.ligo.org/events/G\W 150914/

2. Tested on real data from GW150914 (includes many glitches as shown below)

3. Same nets work on non-stationary colored noise with different PSD without re-training.

Samples of LIGO noise
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https://losc.ligo.org/events/GW150914/

Accuracy of Classifier (Detection)
100

Sensitivity (%)

-@- Deep Filtering —— Matched Filtering

2z < 6 8 10 12 14 16
Optimal Matched-Filter SNR

100% Sensitivity for

| SNR>10

False Alarm Rate
<0.6%
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Relative Error in Predicting Masses

30

N
o

Mean Relative Error (%)

Y
o

—@- Deep Filtering —— Matched Filtering

4 6 8 10 12 14 16

Optimal Matched-Filter SNR

Deep Filtering error
< 5% for SNR>50

Can interpolate
between templates

Matched-Filtering
error with same
template bank is
always > 11%
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Detection and Parameter Estimation

S

Deep Convolutional Neural Network
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Speed-Up

T T T T T T T T T T T T | T T T T T T T T T T T T

Deep Convolutional Neural Network (GPU)
5300x

* Real-time analysis (milliseconds).

* Constant time regardless of humber

. Deep Convolutional Neural Network (CPU)
of templates, after training once.

107x
* Thousands of inputs can be Matched—filtering (CPU)
processed at once on a cheap GPU. .
* Dedicated inference engines can 0 1000 2000 3000 4000 5000

offer additional speed-up. Speed-up Factor for Inference

AV



N B O

0.5

AAMAMAS

0.0 0
= -2
o -0.5 1 -4
6L -1.0 -6t
0.0 00 02 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0¢ 10 ] 2 /\
0.5
0.0 e allc 0 A\ /\V/\VAV,
-05¢ ’ V sk V V \V
o -05 ol
E -1.0
0.0 2 R : 2 . : ; ; ; } ' i ¥ ’ i 4 d 00 02 04 06 08 1.0 0.0 02 04 0.6 0.8 1.0
0.03¢ 0.3
0.02 0.05¢ 0.2
0.01 0.1
0.00 0.00 0.0
-0.01 o
ggg H -0.05¢ -0.2
' -0.3

00 02 04 06 08 1.0

0.0 ! ; i 00 02 04 06 08 10
0.00F
-0.01H 0.5/\ /\ /\ /\
-0.02f
-0.03} V V4
—0.04f -05
-0.05f

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0

False Alarm Rate with sine-gaussian glitch injections: Matched-Filter = ~30%, Deep Filtering = <1%




Normalized Strain

Even works for Events during Glitches!

Detecting Gravitational Wave Signals on top of Glitches
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Successfully recovered ~80% of signals injected in real noise plus sine-gaussian glitches.

Mean relative error of parameter estimation during glitches <30% for SNR>10
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Live Demo:
www.tiny.cc/DLGW

Detecting GW150914

Data not included in training

Trained with only non-spinning,
non-eccentric simulations

~1s to analyze 4096s of data.
Masses correct within error bars

No False Alarms with two
detectors!

Hide true signal &

- ( M
Time from start (s) LI 15.6
Window width (s) L] 0.5
n Detecting Gravitational Waves in Real-Time with Deep Learning ﬂ
NLCSA
Data from a LIGO Interferomeater around the first event (GW130014)

Whitened Strain

WOLFRAM

wolutional Neural Networks
A gravitational wave signal from the merger of two black holes was detected!

The predicted masses of the black holes are about 36 and 33 solar masses.

ko gegen sy NVIDIA.


http://tiny.cc/DLGW

New Types of GWs

Eccentric, Spinning

Not included in training.
Same accuracy of detection.
DNNs learned to generalize.

Missed by current methods.

Whitened Strain

Eccentric BBH Signal: L0020

0.2

0.4

Time (s)

1.0

24



Real-time Multimessenger Astrophysics

Hear gravitational waves

See electromagnetic waves

Feel astroparticles
&iceCuse
i 50m leeTop~ ~ ~—r e
y F | IR

l'!%ri --

\‘- i Amundsen-Scott South
IceCube Laboratory 86 strings of DOMs, Pole Statfon, Antarctica
Data is collected here and set 125 meters apart

A National Science Foul
anaged research facility

sent by satellite to the data
warehouse at UN-Madison

1450 m

DOMs

s
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apart A
Digital Optical U e i

Module (DOM) 2450 m i| 1' Il |
; 5,160 DOMs B o
- - = ~ - deployed in the ice i -
Large Synoptic Survey TFelescope S l

LIGO, VIRGO, KAGRA, eLISA DES, LSST, JWST, WFIRST

IceCube (neutrinos) 25



Enabling Real-Time Multimessenger Astrophysics

Real-time Multimessenger Astrophysics

Deep Learning Deen Neural Neticins Deep Learning
LIGO/VIRGO Jﬂ_. Gravitational Wave |a— | P [ | Transient Image
4 Analysis Pipeline ; Search Pipeline
L ,
Gravitational Wave Templates NANOGrav eLISA
/" (Eccentric, Spin-precessing) ‘\ g (Mock data)
Post-Newtonian Numerical Relativity Gaussian Process Simulated
Code (Inspiral) (Einstein Toolkit) (Merger-Ringdown) transients
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Link to these slides:

Extended article:
Awarded 1st place at the ACM student research competition at SC17

Conclusion

HPC (Blue Waters) Al (Deep Learning) GPUs
Real-time Big Data Analysis for Science!

Email: Webpage: &


http://tiny.cc/nips
http://gravity.ncsa.illinois.edu/
mailto:dgeorge5@illinois.edu
https://arxiv.org/abs/1711.03121

Anomaly Detection,
Unsupervised Clustering
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With LIGO O1 Gravity Spy Dataset arXiv:1711.07468

Glitch Classification and Clustering
for LIGO with Deep Transfer Learning

Daniel George, Hongyu Shen, Eliu Huerta

National Center For Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign



https://arxiv.org/abs/1711.07468

Classes in the Gravity Spy dataset

1888Lines 14@8Ripples i Extremely_Loud

Koi_Fish Light_Modulation Low_Frequency_Burst Low_Frequency_Lines None_of_the_Above

Scattered_Light scratchy Tnmt.- Vielin_Mode Wandering_Line Whistle




Transfer Learning Approach

Humans aren’t trained on large glitch datasets yet perform well. Why?

Indicates real-world pattern recognizers are useful even for glitch classification

Idea: Use pre-trained weights from state-of-the-art networks trained on real photos
Provides off-the-shelf features in the initial layers, fine-tuned later

Much faster (few minutes of training > 98.7% accuracy), less data needed



1080Lines 66
1400Ripples

Air_Compressor

Fine-tuning Inception

Blip

Chirp
Extremely_Loud
Helix

Koi_Fish

.ight_Modulation
Luw_r'requency_Burst
Low_Frequency_Lines

No_Glitch

True Classes

None_of_the_Above

Paired_Doves
H I Power_Line

98.8+ % (4 rounds / 5 min of training) N
Scattered_Light
5ms to 15ms speed of evaluation Sersioty
Tomte

Violin_Mode
Wandering_Line

Perfect precision and recall:

Whistle

47
12

14
91

1 36

91
56
91
71
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1080 Lines, 1440 Ripples, Air Compressor,

Chirp, Helix, Paired Doves, Scratchy, Power Line $

Predictions



CNNs as a Feature-Extractors
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Original CNN (VGG-16)
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Truncated CNN
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Visualizing Clusters of New Classes

. . Projected to 3D with t-SNE
After transfer learning, our truncated -
CNNs can automatically cluster new
0 « \
classes not seen before.
5/ o /\_,«-.;\f\" 1080Lines
\ — e —\;\\“ 1400Ripples
. \ \ Air_Compressor
Synthetic class: ai
2\ ip
. \ “\\ 8 Chirp
Reverse C hir P \‘ 8 \ Extremely_Loud
Ox\ " l Reverse_Chirp
L\‘\\ & ¢ \— o None_of_the_Above
Glitches are organized according to - \ o
their morphologies in this feature-space \ "0
—4 W ~T 2



Denoising



Denoising Gravitational Waves
with Recurrent Neural Networks

arXiv:1711.09919

N

N

Hongyu Shen, Daniel George, K.A. Huerta, Zhizhen Zhao

NCSA Gravity Group - http://gravity.ncsa.illinois.edu/
Department of Statistics, Department of Astronomy,
Department of ECE and Coordinated Science Lab, UTUC



http://gravity.ncsa.illinois.edu/
https://arxiv.org/abs/1711.09919

Results on Real Noise

1. At very low SNR, the network can still recover the shape of the true signal
2. Pure noise input is denoised to a flat line (red in the middle).
3. The network is capable of denoising new types of waveforms (right).

Eccentric GWs

BBH GWs Pure Noise
] ] 44 . .
41— Noisy Signal 41— Noise Input —_— Nolls.y Slgr?al
—— Original Signal —— Flattened Noise — Original Signal
31 —— Denoised Signal 34 34 —— Denoised Signal
21 24 24
g 17 g 14 € 14
2 2 2
g o g of g
< < g 0
—14 14
=14
-2 by
—2 4
-3 3
T T T T -3
013 010 -0.05 0:01s) 015 -0.10 -0.05 0.0 (s)
SNR: 0.50, MSE: 0.001, OR: 0.987 SNR: 0.50, MSE: 0.010. OR: 0.731
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Questions?


http://tiny.cc/nips

