

Deep Learning for Gravitational Wave Analysis Results with LIGO Data

Daniel George & E. A. Huerta

NCSA Gravity Group - <u>http://gravity.ncsa.illinois.edu/</u> Department of Astronomy University of Illinois at Urbana-Champaign

Dec 8, 2017

Gravitational Waves

Source: ligo.org

2

Laser Interferometer Gravitational-Wave Observatory

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GEO600

KAGRA

LIGO India

Black Hole Detections

FIRST COSMIC EVENT OBSERVED IN GRAVITATIONAL WAVES AND LIGHT Colliding Neutron Stars Mark New Beginning of Discoveries

Collision creates light across the entire electromagnetic spectrum. Joint observations independently confirm Einstein's General Theory of Relativity, help measure the age of the Universe, and provide clues to the origins of heavy elements like gold and platinum

Gravitational wave lasted over 100 second

On August 17, 2017, 12:41 UTC, LIGO (US) and Virgo (Europe) detect gravitational waves from the merger of two neutron stars, each around 1.5 times the mass of our Sun. This is

the first detection of spacetime ripples from neutron stars. Within two seconds, NASA's Fermi Gamma-ray Space Telescope detects a short gamma-ray burst from a region of the sky overlapping the LIGO/Virgo position. Optical telescope observations pinpoint the origin of this signal to NGC 4993, a galaxy located 130 million light years distant.

Challenge

Classification & Regression

Numerical Relativity - Supercomputing

Method?

Matched-Filtering:

Compare an input image with millions of photos of cats and dogs and see which matches best.

Template matching is not scalable

Solution:

We want to build this....

Deep Learning!

Deep Learning

Overview

- Very long networks of artificial neurons (dozens of layers)
- State-of-the-art algorithms for face recognition, object identification, natural language understanding, speech recognition and synthesis, web search engines, self-driving cars, games (Go) etc.

hidden layer 1 hidden layer 2

- Does not require hand-crafted features to be extracted first
- Automatic end-to-end learning
- Deeper layers can learn highly abstract functions

Signal Processing with Convolutional Networks

Our method: Deep Filtering

CNNs for directly processing highly noisy time-series data for classification and regression.

Advantages

- Can process raw/whitened data
- Automatically learns optimal strategies
- Train once. Constant-time for evaluation
- Optimized hardware (GPUs, FPGAs)
- Resilient to glitches, non-stationary noise

- Does not perform template matching
- Learns patterns connecting signals
- Interpolates to new templates
- Small and efficient (few MBs)

Designing 1-D CNNs

• Explored only simple designs.

 Up to 4 dilated convolutional layers and 3 fully connected layers.

2 nets: *Classifier* for detection:

Predictor for estimating source parameters

	Input (1s, 8192Hz)	vector (size: 8192)
1	Reshape Layer	tensor (size: 1 × 1 × 8192)
2	Convolution Layer	tensor (size: 16 × 1 × 8177)
3	Pooling Layer	tensor (size: 16 × 1 × 2045)
4	Ramp	tensor (size: 16 × 1 × 2045)
5	Convolution Layer	tensor (size: 32 × 1 × 2017)
6	Pooling Layer	tensor (size: 32 × 1 × 505)
7	Ramp	tensor (size: 32 × 1 × 505)
8	Convolution Layer	tensor (size: $64 \times 1 \times 477$)
9	Pooling Layer	tensor (size: $64 \times 1 \times 120$)
10	Ramp	tensor (size: $64 \times 1 \times 120$)
11	Flatten Layer	vector (size: 7680)
12	Linear Layer	vector (size: 64)
13	Ramp	vector (size: 64)
14	Linear Layer	vector (size: 2)
15	Softmax Layer	vector (size: 2)
	Output	vector (size: 2)

4 5 6

9 10 11

Using Real LIGO Data

- 1. Added real noise from LVT151210 and GW151226 for training (4096s each). Open source, data taken from <u>https://losc.ligo.org/events/GW150914/</u>
- 2. Tested on real data from GW150914 (includes many glitches as shown below)
- 3. Same nets work on non-stationary colored noise with different PSD without re-training.

Relative Error in Predicting Masses

Deep Filtering error < 5% for SNR>50

Can interpolate between templates

Matched-Filtering error with same template bank is always > 11%

Detection and Parameter Estimation

Speed-Up

- Real-time analysis (milliseconds).
- Constant time regardless of number of templates, after training once.
- Thousands of inputs can be processed at once on a cheap GPU.
- Dedicated inference engines can offer additional speed-up.

	Deep Col 5300x	nvolution	al Neural I	Network ((GPU)		đ
	Deep Co 107x	onvolutior	al Neural	Network (CPU)		c
	Matched- <mark>1x</mark>	filtering (CPU)				
0	100	0 20	00 30	00 40	00 5	000	
Speed-up Factor for Inference							

Automatically resilient to Glitches

False Alarm Rate with sine-gaussian glitch injections: Matched-Filter = ~30%, Deep Filtering = <1%

Even works for Events during Glitches!

Successfully recovered ~80% of signals injected in real noise plus sine-gaussian glitches.

Mean relative error of parameter estimation during glitches <30% for SNR>10

Live Demo: www.tiny.cc/DLGW

Detecting GW150914

Data not included in training

- Trained with only non-spinning, non-eccentric simulations
- ~1s to analyze 4096s of data.

Masses correct within error bars

No False Alarms with two detectors!

New Types of GWs

Eccentric, Spinning

Not included in training.

Same accuracy of detection.

DNNs learned to generalize.

Missed by current methods.

Real-time Multimessenger Astrophysics

Hear gravitational waves

See electromagnetic waves

Feel astroparticles

LIGO, VIRGO, KAGRA, eLISA

DES, LSST, JWST, WFIRST

Enabling Real-Time Multimessenger Astrophysics

Link to these slides: www.tiny.cc/nips

Extended article: <u>arXiv:1711.03121</u> Awarded 1st place at the ACM student research competition at SC17

Conclusion

HPC (*Blue Waters*) + AI (*Deep Learning*) + GPUs = Real-time Big Data Analysis for Science!

Email: dgeorge5@illinois.edu

Webpage: http://gravity.ncsa.illinois.edu 27

Anomaly Detection, Unsupervised Clustering

Glitch Classification and Clustering for LIGO with Deep Transfer Learning

With LIGO O1 Gravity Spy Dataset

arXiv:1711.07468

Daniel George, Hongyu Shen, Eliu Huerta

National Center For Supercomputing Applications (NCSA) University of Illinois at Urbana-Champaign

Classes in the Gravity Spy dataset

Transfer Learning Approach

Humans aren't trained on large glitch datasets yet perform well. Why?

Indicates real-world pattern recognizers are useful even for glitch classification

Idea: Use pre-trained weights from state-of-the-art networks trained on real photos Provides off-the-shelf features in the initial layers, fine-tuned later Much faster (few minutes of training > 98.7% accuracy), less data needed

Fine-tuning Inception

98.8+% (4 rounds / 5 min of training)

5ms to 15ms speed of evaluation

Perfect precision and recall:

1080 Lines, 1440 Ripples, Air Compressor,

Chirp, Helix, Paired Doves, Scratchy, Power Line

CNNs as a Feature-Extractors

Original CNN (VGG-16)

relu4_3	Ramp	3-tensor (size: 512 × 28 × 28)
pool4	PoolingLayer	3-tensor (size: 512 × 14 × 14)
conv5_1	ConvolutionLayer	3-tensor (size: 512 × 14 × 14)
relu5_1	Ramp	3-tensor (size: 512 × 14 × 14)
conv5_2	ConvolutionLayer	3-tensor (size: 512 × 14 × 14)
relu5_2	Ramp	3-tensor (size: 512 × 14 × 14)
conv5_3	ConvolutionLayer	3-tensor (size: 512 × 14 × 14)
relu5_3	Ramp	3-tensor (size: 512 × 14 × 14)
pool5	PoolingLayer	3–tensor (size: $512 \times 7 \times 7$)
flatten_0	FlattenLayer	vector (size: 25088)
fc6	LinearLayer	vector (size: 4096)
relu6	Ramp	vector (size: 4096)
drop6	DropoutLayer	vector (size: 4096)
fc7	LinearLayer	vector (size: 4096)
relu7	Ramp	vector (size: 4096)
drop7	DropoutLayer	vector (size: 4096)
fc8	LinearLayer	vector (size: 22)
prob	SoftmaxLayer	vector (size: 22)
	Output	class

Truncated CNN

relu4_3	Ramp	3-tens
pool4	PoolingLayer	3-tens
conv5_1	ConvolutionLayer	3-tens
relu5_1	Ramp	3-tens
conv5_2	ConvolutionLayer	3-tens
relu5_2	Ramp	3-tens
conv5_3	ConvolutionLayer	3-tens
relu5_3	Ramp	3-tens
pool5	PoolingLayer	3-tens
flatten_0	FlattenLayer	vector
fc6	LinearLayer	vector
relu6	Ramp	vector
drop6	DropoutLayer	vector
fc7	LinearLayer	vector
	Output	vector

or (size: 512 × 28 × 28) or (size: 512 × 14 × 14) or (size: $512 \times 14 \times 14$) or (size: 512 × 14 × 14) or (size: $512 \times 7 \times 7$) (size: 25088) (size: 4096) (size: 4096) (size: 4096) (size: 4096) (size: 4096)

Output: Feature Vector

Visualizing Clusters of New Classes

After transfer learning, our truncated CNNs can automatically cluster new classes not seen before.

Synthetic class:

Reverse_Chirp

Glitches are organized according to their morphologies in this feature-space

Denoising

Denoising Gravitational Waves with Recurrent Neural Networks

arXiv:1711.09919

Hongyu Shen, Daniel George, E.A. Huerta, Zhizhen Zhao

NCSA Gravity Group - <u>http://gravity.ncsa.illinois.edu/</u> Department of Statistics, Department of Astronomy, Department of ECE and Coordinated Science Lab, UIUC

Results on Real Noise

- 1. At very low SNR, the network can still recover the shape of the true signal
- 2. Pure noise input is denoised to a flat line (red in the middle).
- 3. The network is capable of denoising new types of waveforms (right).

Link to these slides: www.tiny.cc/nips

Questions?