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Gravitational Waves
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SXS

Source: ligo.org



Credits: Jonah Miller

Laser Interferometer Gravitational-Wave Observatory     



Research

Explain all of the research you’ve done about this 
issue/challenge.
What was the goal of your research? Be sure to explain how 
you found it and anyone who might have helped you!
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Black Hole Detections
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Challenge
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Classification & Regression



Numerical Relativity - Supercomputing
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Method?
Matched-Filtering:

Compare an input image with 
millions of photos of cats and 
dogs and see which matches 
best.

Template matching is not 
scalable

Solution:

Deep Learning!
Source: https://www.slideshare.net/andrewgardner5811/deep-learning-for-data-scientists-dsatl-talk-alpharetta-20140108



Deep Learning
Overview

● Very long networks of artificial 
neurons (dozens of layers)

● State-of-the-art algorithms for face 
recognition, object identification, 
natural language understanding, 
speech recognition and synthesis, 
web search engines, self-driving cars, 
games (Go) etc. 

● Does not require hand-crafted 
features to be extracted first

● Automatic end-to-end learning

● Deeper layers can learn highly 
abstract functions
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Source: https://cs231n.github.io/ 



Signal Processing with Convolutional Networks

Advantages

● Can process raw/whitened data

● Automatically learns optimal strategies

● Train once. Constant-time for evaluation

● Optimized hardware (GPUs, FPGAs)

● Resilient to glitches, non-stationary noise

● Does not perform template matching

● Learns patterns connecting signals

● Interpolates to new templates

● Small and efficient (few MBs)
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Our method: Deep Filtering

CNNs for directly processing highly noisy time-series data for classification and regression.



Designing 1-D CNNs

• Explored only simple designs.

• Up to 4 dilated convolutional layers 
and 3 fully connected layers.

2 nets: Classifier for detection;

Predictor for estimating source 
parameters
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 (1s, 8192Hz)



Using Real LIGO Data
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1. Added real noise from LVT151210 and GW151226 for training (4096s each). 
    Open source, data taken from https://losc.ligo.org/events/GW150914/ 

2. Tested on real data from GW150914 (includes many glitches as shown below)

3. Same nets work on non-stationary colored noise with different PSD without re-training.

https://losc.ligo.org/events/GW150914/


Accuracy of Classifier (Detection)
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False Alarm Rate 
< 0.6%

100% Sensitivity for
SNR > 10



Relative Error in Predicting Masses
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Deep Filtering error 
< 5% for SNR>50

Can interpolate 
between templates

Matched-Filtering 
error with same 
template bank is 
always > 11%



Detection and Parameter Estimation
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Speed-Up
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• Real-time analysis (milliseconds).

• Constant time regardless of number 
of templates, after training once.

• Thousands of inputs can be 
processed at once on a cheap GPU.

• Dedicated inference engines can 
offer additional speed-up.
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Automatically resilient to Glitches

False Alarm Rate with sine-gaussian glitch injections:  Matched-Filter = ~30%,  Deep Filtering = <1%
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Even works for Events during Glitches!

Successfully recovered ~80% of signals injected in real noise plus sine-gaussian glitches.

Mean relative error of parameter estimation during glitches <30% for SNR>10



Live Demo: 
www.tiny.cc/DLGW

Detecting GW150914

Data not included in training

Trained with only non-spinning, 
non-eccentric simulations

~1s to analyze 4096s of data.

Masses correct within error bars

No False Alarms with two 
detectors!
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http://tiny.cc/DLGW


New Types of GWs

Eccentric, Spinning

Not included in training.

Same accuracy of detection.

DNNs learned to generalize.

Missed by current methods.
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Real-time Multimessenger Astrophysics
See electromagnetic waves Feel astroparticles
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Hear gravitational waves

  LIGO, VIRGO, KAGRA, eLISA   DES, LSST, JWST, WFIRST  IceCube (neutrinos)
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Enabling Real-Time Multimessenger Astrophysics



Conclusion
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Link to these slides:   www.tiny.cc/nips

  Webpage:   http://gravity.ncsa.illinois.edu  Email:   dgeorge5@illinois.edu

HPC (Blue Waters) + AI (Deep Learning) + GPUs 
=  Real-time Big Data Analysis for Science!

Extended article:   arXiv:1711.03121 
Awarded 1st place at the ACM student research competition at SC17 

http://tiny.cc/nips
http://gravity.ncsa.illinois.edu/
mailto:dgeorge5@illinois.edu
https://arxiv.org/abs/1711.03121
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Anomaly Detection,
Unsupervised Clustering



Glitch Classification and Clustering 
for LIGO with Deep Transfer Learning

With LIGO O1 Gravity Spy Dataset                                         arXiv:1711.07468

Daniel George, Hongyu Shen, Eliu Huerta

National Center For Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign

https://arxiv.org/abs/1711.07468


Classes in the Gravity Spy dataset



Transfer Learning Approach

Humans aren’t trained on large glitch datasets yet perform well. Why?

Indicates real-world pattern recognizers are useful even for glitch classification

Idea: Use pre-trained weights from state-of-the-art networks trained on real photos

Provides off-the-shelf features in the initial layers, fine-tuned later

Much faster (few minutes of training > 98.7% accuracy), less data needed



98.8+ % (4 rounds / 5 min of training)

5ms to 15ms speed of evaluation

Perfect precision and recall:

1080 Lines, 1440 Ripples, Air Compressor, 

Chirp, Helix, Paired Doves, Scratchy, Power Line

Fine-tuning Inception



CNNs as a Feature-Extractors

Output: Feature Vector

Original CNN (VGG-16) Truncated CNN



Visualizing Clusters of New Classes

After transfer learning, our truncated 
CNNs can automatically cluster new 
classes not seen before.

Synthetic class:

Reverse_Chirp

Glitches are organized according to 
their morphologies in this feature-space

Projected to 3D with t-SNE
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Denoising



Denoising Gravitational Waves 
with Recurrent Neural Networks

Hongyu Shen, Daniel George, E.A. Huerta, Zhizhen Zhao

NCSA Gravity Group - http://gravity.ncsa.illinois.edu/
Department of Statistics, Department of Astronomy,
Department of ECE and Coordinated Science Lab, UIUC

arXiv:1711.09919

http://gravity.ncsa.illinois.edu/
https://arxiv.org/abs/1711.09919


Results on Real Noise
1. At very low SNR, the network can still recover the shape of the true signal 
2. Pure noise input is denoised to a flat line (red in the middle).
3. The network is capable of denoising new types of waveforms (right).



Questions?
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