Neural Message Passing for Jet Physics

Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghyun Cho, Kyle Cranmer, Gilles Louppe, Gaspar Rochette

Courant Institute & Center for Data Science

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Introduct	tion				

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Introduct	ion				

from physics.knowledge import *

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Introduct	ion				

+

from physics.knowledge import *

from ml.algorithms import *

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Introduct	ion				

from physics.knowledge import *

from ml.algorithms import *

from __future__ import nobel.prize

[...]

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Introduct	tion				

from physics.knowledge import *

from ml.algorithms import *

from __future__ import nobel.prize

[...]

[†][K. Cranmer, '17]

Introduction

Conclusions

Jet physics

Large Hadron Collider

Jet Physics

Previous wor

Proposed mod

nodel

riments

Conclusions

ATLAS

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Microsco	pic picture	1			

pencil and paper calculable from first principles

pencil and paper calculable from first principles

controlled approximation of first principles

Introduction Jet Physics Previous work Proposed model Experiments Conclusions
Microscopic picture

pencil and paper calculable from first principles

controlled approximation of first principles

phenomenological model

Macroscopic picture

Macroscopic picture

Macroscopic picture

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Classifica	tion of W	-bosons			

Input

Momentum estimates of jet constituents

 $\{x_1,\ldots,x_n\}$

Input

Momentum estimates of jet constituents

Goal

Infer the progenitor particle of the jet.

$$\{x_1, \ldots, x_n\} \to \begin{cases} W \text{-boson (signal)} \\ QCD (background) \end{cases}$$

Input

Momentum estimates of jet constituents

Goal

Infer the progenitor particle of the jet.

$$\{x_1,\ldots,x_n\} \rightarrow \begin{cases} W \text{-boson (signal)} \\ QCD (background) \end{cases}$$

Binary classification problem!

Introduction

et Physics

Previous work

roposed mod

xperiment

Conclusions

Previous work

pre-process

dense layer

0 0 0 quark jet

gluon jet

max-pooling

.

convolutional layer

 b_{eam}

- Attempt to reverse the generative process
- Sequential recombination algorithms

- Attempt to reverse the generative process
- Sequential recombination algorithms
- Cambridge-Aachen, k_t , anti- k_t

- Attempt to reverse the generative process
- Sequential recombination algorithms
- ▶ Cambridge-Aachen, k_t, anti-k_t
- Binary tree representation

- Attempt to reverse the generative process
- Sequential recombination algorithms
- ▶ Cambridge-Aachen, k_t, anti-k_t
- Binary tree representation
- ▶ NLP methods for parse trees

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Recursive	e neural n	etwork			

Introduction

et Physics

Previous work

Proposed model

xperiments

Conclusions

Our work

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Jet grap	hs				

QCD jet

W jet


```
Algorithm 1 Message passing neural network
Require: N \times D nodes x, adjacency matrix A
   \mathbf{h} \leftarrow \mathsf{Embed}(\mathbf{x})
   for t = 1, ..., T do
         \mathbf{m} \leftarrow \mathsf{Message}(A, \mathbf{h})
         \mathbf{h} \leftarrow \text{VertexUpdate}(\mathbf{h}, \mathbf{m})
   end for
   \mathbf{r} = \mathsf{Readout}(\mathbf{h})
   return Classify(r)
```

Question

Where does adjacency matrix come from?

Question

Where does adjacency matrix come from?

Answer 1

Use a physics-inspired adjacency matrix.

Question

Where does adjacency matrix come from?

Answer 1

Use a physics-inspired adjacency matrix. BONUS: import physics knowledge

Question

Where does adjacency matrix come from?

Answer 1

Use a physics-inspired adjacency matrix. BONUS: import physics knowledge

Answer 2

Learn the adjacency matrix from the data.

Question

Where does adjacency matrix come from?

Answer 1

Use a physics-inspired adjacency matrix. BONUS: import physics knowledge

Answer 2

Learn the adjacency matrix from the data. BONUS: export physics algorithm

Question

Where does adjacency matrix come from?

Answer 1

Use a physics-inspired adjacency matrix. BONUS: import physics knowledge

Answer 2

Learn the adjacency matrix from the data. BONUS: export physics algorithm

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Learning	the adjac	ency matrix			

$$s_{ij}^{t} = F(h_i^{t-1}, h_j^{t-1})$$

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Learning the adjacency matrix

 $F(h, h') = v^{\top}(h+h') + b$

Proposed model L

$$F(h, h') = \mathbf{v}^{\top}(h+h') + b$$

$$s_{ij}^{t} = F(h_i^{t-1}, h_j^{t-1})$$

$$A_{ij}^{t} = \frac{\exp\{s_{ij}^{t}\}}{\sum_{k} \exp\{s_{ik}^{t}\}}$$
 (directed)

Introduction Jet Physics Previous work **Proposed model** Experiments Conclusions

$$F(h, h') = \mathbf{v}^{\top}(h+h') + b$$

$$s_{ij}^t = F(h_i^{t-1}, h_j^{t-1})$$

$$A_{ij}^{t} = rac{\exp\{s_{ij}^{t}\}}{\sum_{k} \exp\{s_{ik}^{t}\}}$$
 (directed)

$$A_{\mathsf{sym}} = rac{1}{2} \left(A + A^{ op}
ight)$$
 (undirected)

Algorithm 2 Message passing neural network **Require:** $N \times D$ array of jet constituents **x** $\mathbf{h} \leftarrow \mathsf{Embed}(\mathbf{x})$ for t = 1, ..., T do $A \leftarrow AdjacencyMatrix_t(\mathbf{h})$ $\mathbf{m} \leftarrow \text{Message}_t(A, \mathbf{h})$ $\mathbf{h} \leftarrow \text{VertexUpdate}_{t}(\mathbf{h}, \mathbf{m})$ end for $\mathbf{r} = \text{Readout}(\mathbf{h})$ **return** Classify(**r**)

Introduction

et Physics

Previous work

roposed mod

Experiments

Conclusions

Experiments

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Dataset a	and metric	:			

▶ Data sampled from the PYTHIA event generator

- ▶ Data sampled from the PYTHIA event generator
- ▶ Same as in [Louppe et al. 2017]

- ▶ Data sampled from the PYTHIA event generator
- ▶ Same as in [Louppe et al. 2017]
- 90k/10k/100k examples (train/validation/test)

- ▶ Data sampled from the PYTHIA event generator
- ▶ Same as in [Louppe et al. 2017]
- 90k/10k/100k examples (train/validation/test)
- Classes are balanced: 50/50 signal/background

- ► Data sampled from the PYTHIA event generator
- ▶ Same as in [Louppe et al. 2017]
- 90k/10k/100k examples (train/validation/test)
- ▶ Classes are balanced: 50/50 signal/background
- Metric: 1/FPR @ TPR = 50%

- ▶ Data sampled from the PYTHIA event generator
- ▶ Same as in [Louppe et al. 2017]
- 90k/10k/100k examples (train/validation/test)
- ▶ Classes are balanced: 50/50 signal/background
- Metric: 1/FPR @ TPR = 50%
- Binary cross-entropy loss

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Classifica	ation result	ts			

Model	Iterations	$R_{\epsilon=50\%}$
Rec-NN (no gating)	1	70.4 ± 3.6
Rec-NN (gating)	1	$\textbf{83.3} \pm \textbf{3.1}$
MPNN (directed)	1	89.4 ± 3.5
MPNN (directed)	2	$\textbf{98.3} \pm \textbf{4.3}$
MPNN (directed)	3	85.9 ± 8.5
MPNN (identity)	3	74.5 ± 5.2
Relation Network	1	67.7 ± 6.8

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Classific	ation resul	ts			

1/FP	R @ TPR	= 50%
Model	Iterations	$R_{\epsilon=50\%}$
Rec-NN (no gating)	1	70.4 ± 3.6
Rec-NN (gating)	1	$\textbf{83.3} \pm \textbf{3.1}$
MPNN (directed)	1	89.4 ± 3.5
MPNN (directed)	2	$\textbf{98.3} \pm \textbf{4.3}$
MPNN (directed)	3	85.9 ± 8.5
MPNN (identity)	3	74.5 ± 5.2
Relation Network	1	67.7 ± 6.8

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Classific	ation resul	ts			

1/FP	PR @ TPR	= 50%
Model	Iterations	$R_{\epsilon=50\%}$
Rec-NN (no gating)	1	70.4 ± 3.6
Rec-NN (gating)	1	$\textbf{83.3} \pm \textbf{3.1}$
MPNN (directed)	1	89.4 ± 3.5
MPNN (directed)	2	$\textbf{98.3} \pm \textbf{4.3}$
MPNN (directed)	3	85.9 ± 8.5
MPNN (identity)	3	74.5 ± 5.2
Relation Network	1	$\overline{67.7\pm6.8}$

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Classific	ation resul	ts			

1/FF	PR @ TPR	= 50%
Model	Iterations	$R_{\epsilon=50\%}$
Rec-NN (no gating)	1	70.4 ± 3.6
Rec-NN (gating)	1	$\textbf{83.3} \pm \textbf{3.1}$
MPNN (directed)	1	89.4 ± 3.5
MPNN (directed)	2	$\textbf{98.3} \pm \textbf{4.3}$
MPNN (directed)	3	85.9 ± 8.5
MPNN (identity)	3	74.5 ± 5.2
Relation Network	1	$\overline{67.7\pm6.8}$

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Results					

Introduction	Jet Physics	Previous work	Proposed model	Experiments	Conclusions
Future we	ork				

► MPNN is O(n²) - can we make the matrix sparse?

- MPNN is O(n²) can we make the matrix sparse?
- ► Apply MPNN to larger datasets.

- ► MPNN is O(n²) can we make the matrix sparse?
- ► Apply MPNN to larger datasets.
- Reduce the number of nodes at each iteration (attention).

- ► MPNN is O(n²) can we make the matrix sparse?
- ► Apply MPNN to larger datasets.
- Reduce the number of nodes at each iteration (attention).
- Use QCD-inspired adjacency matrix for message passing.

- MPNN is O(n²) can we make the matrix sparse?
- ► Apply MPNN to larger datasets.
- Reduce the number of nodes at each iteration (attention).
- Use QCD-inspired adjacency matrix for message passing.
- Export adjacency matrix for sequential recombination jet algorithms.
Introduction

et Physics

Previous work

roposed mod

×periments

Conclusions

Thank you!