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Classification of W-bosons

Input
Momentum estimates of jet constituents

Goal
Infer the progenitor particle of the jet.

{x1, . . . , xn} →
{
W -boson (signal)
QCD (background)

Binary classification problem!
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Jet images
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

[image: Komiske, Metodiev, Schwartz arxiv:1612.01551]

[Oliveira et al arXiv:1511.05190]
[Baldi et al arXiv:1603.09349]

[Barnard et al arXiv:1609.00607]
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Jet images 3
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
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Jet parse trees
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I Attempt to reverse the generative process

I Sequential recombination algorithms

I Cambridge-Aachen, kt , anti-kt

I Binary tree representation

I NLP methods for parse trees
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Recursive neural network

H A N D L I N G  VA R I A B L E  L E N G T H  D ATA

•Recurrent Neural Network (acting on a variable-length sequence) 

•Generalization: Recursive Neural Network

80

yk =





uk if k a leaf

σ


Wh



ykL
ykR
uk


+ bh


 otherwise

uk = σ (Wug(ok) + bu)

ok =

{
xi(k) if k a leaf
okL + okr otherwise

[Louppe et al. 2017]
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Jet graphs
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Message Passing Neural Network

Algorithm 1 Message passing neural network
Require: N × D nodes x, adjacency matrix A

h←Embed(x)
for t = 1, . . . ,T do

m← Message(A,h)
h← VertexUpdate(h,m)

end for
r = Readout(h)
return Classify(r)
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Question
Where does adjacency matrix come from?

Answer 1
Use a physics-inspired adjacency matrix.

BONUS: import physics knowledge

Answer 2
Learn the adjacency matrix from the data.

BONUS: export physics algorithm
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Message Passing Neural Network

Algorithm 2 Message passing neural network
Require: N × D array of jet constituents x

h←Embed(x)
for t = 1, . . . ,T do

A← AdjacencyMatrixt(h)
m← Messaget(A,h)
h← VertexUpdatet(h,m)

end for
r = Readout(h)
return Classify(r)
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Dataset and metric

I Data sampled from the PYTHIA event generator

I Same as in [Louppe et al. 2017]

I 90k/10k/100k examples (train/validation/test)

I Classes are balanced: 50/50 signal/background

I Metric: 1/FPR @ TPR = 50%

I Binary cross-entropy loss
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Classification results

Model Iterations Rε=50%

Rec-NN (no gating) 1 70.4± 3.6
Rec-NN (gating) 1 83.3± 3.1

MPNN (directed) 1 89.4± 3.5
MPNN (directed) 2 98.3± 4.3
MPNN (directed) 3 85.9± 8.5

MPNN (identity) 3 74.5± 5.2

Relation Network 1 67.7± 6.8

1/FPR @ TPR = 50%
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Future work

I MPNN is O(n2) – can we make the matrix
sparse?

I Apply MPNN to larger datasets.
I Reduce the number of nodes at each iteration
(attention).

I Use QCD-inspired adjacency matrix for message
passing.

I Export adjacency matrix for sequential
recombination jet algorithms.
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