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• Recent Progress

• Future Prospects
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Big Data in Physical and Life Sciences
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Earth Science

Material ScienceGenomics

• Satellite Data
• In-situ Sensors
• Model Simulations
• Experimental Data
• Survey Reports



• Hugely successful in commercial applications:

Age of Data Science

Input Output
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Deep Learning

“Black-box” models 
learn patterns and 
models solely from 

data without relying on 
scientific knowledge
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“Unlike earlier attempts …   
[AI systems] can see patterns 
and spot anomalies in data 
sets far larger and messier 

than human beings can cope 
with.”

July 7 2017 Issue

Promise of Data Science in Transforming 
Scientific Discovery



6

“Unlike earlier attempts …   
[AI systems] can see patterns 
and spot anomalies in data 
sets far larger and messier 

than human beings can cope 
with.”

July 7 2017 Issue

Promise of Data Science in Transforming 
Scientific Discovery

Wired Magazine, 2008

Will the rapidly growing area of 
“black-box” data science models 

make existing theory-based 
models obsolete?



Limits of “Black-box” Data Science Methods

• Predicted flu using Google search queries

• Overestimated by twice in later years
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Climate Science: 



Why Do Black-box Methods Fail? (1/2)

• Scientific problems are often under-constrained
– Complex, dynamic, and non-stationary relationships

– Large number of variables, small number of samples

• Standard methods for evaluating ML models (e.g., 
cross-validation) break down
– Easy to learn spurious relationships that look deceptively 

good on training and test sets 

– But lead to poor generalization outside the available data

812/8/17

Huge number of samples is critical to success of methods such as deep learning



Why Do Black-box Methods Fail? (2/2)

• Interpretability is an important end-goal (esp. in scientific 
problems)

• Need to explain or discover mechanisms of underlying 
processes to …
– Form a basis for scientific advancements

– Safeguard against the learning of non-generalizable patterns

912/8/17

- Castelvecchi 2016



Theory-based vs. Data Science Models

Contain knowledge gaps in 
describing certain processes

(turbulence, groundwater flow)
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Gravitational Law

Navier-Stokes Equation Schrodinger’s Equation

Conservation of Mass, Momentum, Energy



Theory-based vs. Data Science Models

Contain knowledge gaps in 
describing certain processes

(turbulence, groundwater flow)

Require large number of 
representative samples

Take full advantage of data 
science methods without ignoring 

the treasure of accumulated 
knowledge in scientific “theories” 
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Data Science Models

Theory-guided 
Data Science Models

(TGDS)1

1 Karpatne et al. “Theory-guided data science: A new 
paradigm for scientific discovery,” TKDE 2017
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Theory-guided Data Science: 
Emerging Applications

• Earth Science:
– Karpatne et al., “Physics-guided Neural Networks: 

Application in Lake Temperature Modeling,” SDM 
2018 (in review).

– Faghmous et al., “Theory-guided data science for 
climate change,” IEEE Computer, 2014.

– Faghmous and Kumar, “A big data guide to 
understanding climate change: The case for 
theory-guided data science,” Big data, 2014.

• Fluid Dynamics:
– Singh et al., “Machine learning- augmented 

predictive modeling of turbulent separated flows 
over airfoils,” arXiv, 2016.
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• Material Science:
– Curtarolo et al., “The high-throughput highway to 

computational materials design,” Nature 
Materials, 2013.

• Computational Chemistry:
– Li et al., “Understanding machine-learned density 

functionals,” International Journal of Quantum 
Chemistry, 2015.

• Neuroscience, Biomedicine, 
Particle Physics, …

Symposium by Los Alamos National Laboratory, 2016, 2018

“Physical Analytics” Research Division

AI for Scientific Progress, 
2016

Workshop on Deep Learning 
for Physical Sciences 2017



An Overarching Objective of TGDS

Learning Physically Consistent Models

• Traditionally, “simpler” models are preferred for generalizability

– Basis of several statistical principles such as bias-variance trade-off
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M1 (less complex model): 
High bias—Low variance

M3 (more complex model): 
Low bias—High variance

Generalization Performance      Accuracy + Simplicity



An Overarching Objective of TGDS

Learning Physically Consistent Models

• Traditionally, “simpler” models are preferred for generalizability

– Basis of several statistical principles such as bias-variance trade-off

• In scientific problems, “physical consistency” can be used as another measure 
of generalizability

– Can help in pruning large spaces of inconsistent solutions

– Result in generalizable and physically meaningful results
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Generalization Performance      Accuracy + Simplicity + Consistency

M1 (less complex model): 
High bias—Low variance

M3 (more complex model): 
Low bias—High variance



Physics-Guided Neural Networks (PGNN)
A Framework for Learning Physically Consistent Deep Learning Models
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Karpatne et al., “Physics-guided neural networks (PGNN): 
Application in Lake Temperature Modeling,” SDM 2018 (in review; arXiv: 1710.11431).

Scientific Knowledge (Physics) 
Used to guide selection of model architecture, 

activation functions, loss functions, …



Case Study: Lake Temperature Modeling

161Hipsey et al., 2014

Temp

Input Drivers:
Short-wave Radiation,
Long-wave Radiation,

Air Temperature,
Relative Humidity,

Wind Speed,
Rain, …

Target Output:
Temp. of water at every depth

Physics-based Approach: General Lake Model (GLM)1

– Captures physical processes 
responsible for energy balance

– Requires lake-specific calibration 
using large amounts of data and 
computational resources

RMSE of Uncalibrated Model:  2.57
RMSE of Calibrated Model:  1.26

(for Lake Mille Lacs in Minnesota)



PGNN 1:

Use GLM Output as Input in Neural Network
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…

Input Drivers

          +        
Output of GLM 

(Uncalibrated)

• Deep Learning can augment physics-based models by modeling their errors

• Part of a broader research theme on creating hybrid-physics-data models



PGNN 2:

Use Physics-based Loss Functions
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• Temp estimates need to be consistent with physical relationships 
b/w temp, density, and depth

Physical Constraint: 
Denser water is at higher depth

Does not require labels!



Physical Consistency Ensures Generalizability

GLM
(Uncalibrated)

Black-box 
Neural Network PGNN

GLM
(Calibrated)

RMSE (in °C) 2.57 1.77 1.16 1.26
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PGNN

PGNN



Future Prospects: Theory-guided Data Science

1. Theory-guided Learning

• Choice of Loss Function

• Constrained Optimization 
Methods

• Probabilistic Models

[Limnology, Chemistry, Biomedicine, 
Climate, Genomics]
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2. Theory-guided Design

• Choice of Response/Loss 
Functions

• Design of Model Architecture

[Turbulence Modeling, Neuroscience]

3. Theory-guided Refinement

• Post-processing
• Pruning

[Remote Sensing, Material Science]

4. Creating Hybrid Models of 
Theory and Data Science

• Residual Modeling
• Predicting Intermediate Quantities

[Hydrology, Turbulence Modeling]

5. Augmenting Theory-based 
Models using Data

• Calibrating Model Parameters
• Data Assimilation

[Hydrology, Climate Science, Fluid Dynamics]



Concluding Remarks
• “Black-box” deep learning methods not sufficient for knowledge 

discovery in scientific domains

• Physics can be combined with deep learning in a variety of ways 
under the paradigm of “theory-guided data science”

• Use of physical knowledge ensures physical consistency as well as 
generalizability

• Theory-guided data science is already starting to gain attention in 
several disciplines:
– Climate science and hydrology
– Turbulence modeling
– Bio-medical science
– Bio-marker discovery
– Material discovery
– Computational chemistry, …
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Thank You!

• Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly, 
A., Shekhar, S., Samatova, N. and Kumar, V., “Theory-Guided Data Science: A 
New Paradigm for Scientific Discovery from Data”. IEEE Transactions on 
Knowledge and Data Engineering, 29(10), pp.2318-2331, 2017.

• Karpatne, A., Watkins W., Read, J., and Kumar, V., “Physics-guided Neural 
Networks (PGNN): An Application in Lake Temperature Modeling”. SIAM 
International Conference on Data Mining 2018 (in review; arXiv: 1710.11431).

• Contact: karpa009@umn.edu
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