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Big Data in Physical and Life Sciences

Earth Science

Satellite Data
In-situ Sensors
Model Simulations
Experimental Data
Survey Reports

Genomics Material Science
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Age of Data Science

Deep Learning

“Black-box” models

learn patterns and
models solely from

data without relying on
scientific knowledge

* Hugely successful in commercial applications:
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Promise of Data Science in Transforming
Scientific Discovery
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Researchers are unleashing
artificial intelligence (Al on
torrents of big data
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Promise of Data Science in Transforming
Scientific Discovery

of Science g

The quest for
s

Will the rapidly growing area of
“black-box” data science models
make existing theory-based
models obsolete?




Limits of “Black-box” Data Science Methods

The Pf_"'ah_le of Google Fl_“: * Predicted flu using Google search queries
Traps in Big Data Analysis

* Overestimated by twice in later years
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Obtained by data mining " . ..you will always need to start with an analysis that relies on

an understanding of physics and biochemistry."



Why Do Black-box Methods Fail? (1/2)

* Scientific problems are often under-constrained
— Complex, dynamic, and non-stationary relationships
— Large number of variables, small number of samples

e Standard methods for evaluating ML models (e.g.,
cross-validation) break down

— Easy to learn spurious relationships that look deceptively
good on training and test sets

— But lead to poor generalization outside the available data

Huge number of samples is critical to success of methods such as deep learning



Why Do Black-box Methods Fail? (2/2)

* Interpretability is an important end-goal (esp. in scientific
problems)

Can we open the black box of AI?  [8E1LEI(®

Artificial intelligence is everywhere. But before scientists trust it, they first need to
understand how machines learn. - Castelvecchi 2016

* Need to explain or discover mechanisms of underlying
processes to ...

— Form a basis for scientific advancements
— Safeguard against the learning of non-generalizable patterns
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Theory-based vs. Data Science Models
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Theory-based vs. Data Science Models
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Theory-guided Data Science:
Emerging Applications
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functionals,” International Journal of Quantum
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An Overarching Objective of TGDS
Learning Physically Consistent Models

* Traditionally, “simpler” models are preferred for generalizability
— Basis of several statistical principles such as bias-variance trade-off

\_/M M, M M1 (less complex model):
? High bias—Low variance
M3 (more complex model):
Low bias—High variance
% Truth

Generalization Performance oc Accuracy + Simplicity



An Overarching Objective of TGDS
Learning Physically Consistent Models

/ Physically Inconsistent
Physically Inconsistent . <« Models

Models  ~.._. <k Truth

* In scientific problems, “physical consistency” can be used as another measure
of generalizability

— Can help in pruning large spaces of inconsistent solutions
— Result in generalizable and physically meaningful results

Generalization Performance oc Accuracy + Simplicity + Consistency



Physics-Guided Neural Networks (PGNN)

A Framework for Learning Physically Consistent Deep Learning Models

Scientific Knowledge (Physics)
Used to guide selection of model architecture,
activation functions, loss functions, ...

Karpatne et al., “Physics-guided neural networks (PGNN):
Application in Lake Temperature Modeling,” SDM 2018 (in review; arXiv: 1710.11431).



Case Study: Lake Temperature Modeling

;z US S @ Center for Limnology

University of Wisconsin—Madison

Input Drivers: Target Output:

Short-wave Radiation, Temp. of water at every depth
Long-wave Radiation, R e e T e

Air Temperature, _a
Relative Humidity,
Wind Speed,
Rain, ...

Temp

Physics-based Approach: General Lake Model (GLM)*

— Captures physical processes

responsible for energy balance RMSE of Uncalibrated Model: 2.57
— Requires lake-specific calibration RMSE of Calibrated Model: 1.26
using large amounts of data and (for Lake Mille Lacs in Minnesota)

computational resources

Hipsey et al., 2014



PGNN 1:
Use GLM Output as Input in Neural Network

* Deep Learning can augment physics-based models by modeling their errors

* Part of a broader research theme on creating hybrid-physics-data models
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PGNN 2:
Use Physics-based Loss Functions

 Temp estimates need to be consistent with physical relationships
b/w temp, density, and depth

1000 r

Physical Constraint:
Denser water is at higher depth
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Does not require labels!



Physical Consistency Ensures Generalizability

GLM

(Uncalibrated)

Black-box

Neural Network

PGNN
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Future Prospects: Theory-guided Data Science

1. Theory-guided Learning

. Choice of Loss Function

 Constrained Optimization
Methods

*  Probabilistic Models
[Limnology, Chemistry, Biomedicine,
Climate, Genomics]

2. Theory-guided Design

Choice of Response/Loss
Functions

 Design of Model Architecture

[Turbulence Modeling, Neuroscience]

3. Theory-guided Refinement

C Post-processing
C Pruning

[Remote Sensing, Material Science]

4. Creating Hybrid Models of
Theory and Data Science

. Residual Modeling
. Predicting Intermediate Quantities

[Hydrology, Turbulence Modeling]

5. Augmenting Theory-based
Models using Data

. Calibrating Model Parameters
. Data Assimilation

[Hydrology, Climate Science, Fluid Dynamics]



Concluding Remarks

“Black-box” deep learning methods not sufficient for knowledge
discovery in scientific domains

Physics can be combined with deep learning in a variety of ways
under the paradigm of “theory-guided data science”

Use of physical knowledge ensures physical consistency as well as
generalizability

Theory-guided data science is already starting to gain attention in
several disciplines:

— Climate science and hydrology

— Turbulence modeling

— Bio-medical science

— Bio-marker discovery

— Material discovery

— Computational chemistry, ...
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