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Genome-Wide Association Studies

Data consists of individuals with genetic factors xnm and a trait yn.

• Single nucleotide polymorphisms (SNPs) xnm are encoded as a 0, 1, or 2.
(≈100K–1M)

• Phenotypes yn may represent metabolic levels, height, disease signals.
(=1)

The goal is to understand how genetic factors cause traits in individuals.
[fig from Gopalan+ 2017]



Problems in GWAS

1. Richer causal models. Existing models apply few-to-no nonlinearities, h
and engineer interactions, and assume additive Gaussian noise.

2. Latent confounders. 1. Latent population structure—subgroups in the
population with ancestry differences. 2. relatedness among individuals.

[fig from Song+ 2015]



Background: Probabilistic Causal Models
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β = fβ(εβ).

For each data point,

xn = fx(εx,n, β)

yn = fy(εy,n, xn, β).

All variables are functions of noise ε ∼ s(·) and other variables.

We are interested in estimating the causal mechanism fy . It lets us calculate
the causal effect p(y | do(X = x), β).



Background: Probabilistic Causal Models

Under the causal graph, p(y | do(x), β) = p(y | x, β). This means we can
estimate fy from observational data {(xn, yn)}.

Example. An additive noise model posits

yn = f (xn, β | θ) + εn, ε ∼ s(·).

f might be linear or use splines. With a prior p(θ), Bayesian inference
yields

p(θ | x, y, β) ∝ p(θ)p(y | x, θ, β).

We can use standard approximate inference algorithms.



Implicit Causal Models

Implicit models posit a distribution via its generative process. For noise
ε ∼ s(·) define a function g,

x = g(ε | θ), ε ∼ s(·).

Setting g to a neural net enables multilayer, nonlinear interactions.

Implicit causal models are universal approximators of causal models.



Implicit Causal Models with Latent Confounder

Consider a causal model for GWAS. For each SNP m = 1, . . . ,M,

zn = gz(εzn),

xnm = gxm(εxnm , zn |wm),
yn = gy(εyn , xn,1:M, zn | θ).

This is newly drawn per person n.
[fig from Song+ 2015]



Implicit Causal Model with a Latent Confounder

Confounders. zn ∼ Normal(zn; 0, IK).



Implicit Causal Model with a Latent Confounder

SNPs. xnm ∼ Binomial(2, πnm).

Logits are a nonlinear function of zn and latent factors,

logitπnm = NN([zn,wm] |φ).

Standard normal prior over wm and φ. This generalizes logistic factor
analysis.

[fig from Price+ 2006]



Implicit Causal Model with a Latent Confounder

Traits. yn = NN([xn,1:M, zn, ε] | θ), εn ∼ Normal(0, 1)

This generalizes linear regression.

We place a group Lasso prior on weights in first hidden layer. This encourages
sparse inputs. Standard normal for others.

[fig from Feng+Simon 2017]



Causal Inference

To estimate the mechanism fy we calculate the posterior p(θ | x, y).

p(θ | x, y) =
∫
p(z,w, φ | x, y)p(θ | x, y, · · · ) dz dw dφ.

This accounts for the latent confounders: p(z | x, y). We effectively infer the
posterior of θ, averaged over samples from p(z | x, y).

Note. Causal inference with latent confounders can be dangerous: it uses the
data twice. Our work proves p(θ | x, y) provides a consistent estimator of the
causal mechanism fy .



Causal Inference

p(θ | x, y) =
∫
p(z,w, φ | x, y)p(θ | x, y, · · · ) dz dw dφ.

The posterior is intractable. Moreover, the model admits an intractable
likelihood. This bars traditional algorithms.

We use likelihood-free variational inference. We scale it to millions of genetic
factors. (Available in Edward!)



Simulation Study

Trait ICM PCA [Price+06] LMM [Kang+10] GCAT [Song+10]

HapMap 99.2 34.8 30.7 99.2
TGP 85.6 2.7 43.3 70.3
HGDP 91.8 6.8 40.2 72.3
PSD (a = 1) 97.0 80.4 92.3 95.3
PSD (a = 0.5) 94.3 79.5 90.1 93.6
PSD (a = 0.1) 92.2 38.1 38.6 90.4
PSD (a = 0.01) 92.7 24.2 35.1 90.7
Spatial (a = 1) 90.9 56.4 60.0 75.2
Spatial (a = 0.5) 86.2 50.5 46.6 72.5
Spatial (a = 0.1) 80.9 2.4 26.6 35.6
Spatial (a = 0.01) 75.5 1.8 15.3 30.2

11 configurations of 100,000 SNPs and 940 to 5,000 individuals.

Implicit causal models achieve 15-45.3% higher accuracy. They are more
robust to spurious associations across all experiments.


